关于紧致黎曼流形上阻尼波和Schrödinger方程对数衰减的注记

IF 0.5 4区 数学 Q3 MATHEMATICS
Iván Moyano, N. Burq
{"title":"关于紧致黎曼流形上阻尼波和Schrödinger方程对数衰减的注记","authors":"Iván Moyano, N. Burq","doi":"10.4171/pm/2107","DOIUrl":null,"url":null,"abstract":"In this paper we consider a compact Riemannian manifold (M, g) of class C 1 $\\cap$ W 2,$\\infty$ and the damped wave or Schr\\\"odinger equations on M , under the action of a damping function a = a(x). We establish the following fact: if the measure of the set {x $\\in$ M ; a(x) = 0} is strictly positive, then the decay in time of the associated energy is at least logarithmic.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A remark on the logarithmic decay of the damped wave and Schrödinger equations on a compact Riemannian manifold\",\"authors\":\"Iván Moyano, N. Burq\",\"doi\":\"10.4171/pm/2107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a compact Riemannian manifold (M, g) of class C 1 $\\\\cap$ W 2,$\\\\infty$ and the damped wave or Schr\\\\\\\"odinger equations on M , under the action of a damping function a = a(x). We establish the following fact: if the measure of the set {x $\\\\in$ M ; a(x) = 0} is strictly positive, then the decay in time of the associated energy is at least logarithmic.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在阻尼函数a=a(x)的作用下,我们考虑了类C1$cap$W2,$infty$的紧致黎曼流形(M,g)和M上的阻尼波或Schr“odinger方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on the logarithmic decay of the damped wave and Schrödinger equations on a compact Riemannian manifold
In this paper we consider a compact Riemannian manifold (M, g) of class C 1 $\cap$ W 2,$\infty$ and the damped wave or Schr\"odinger equations on M , under the action of a damping function a = a(x). We establish the following fact: if the measure of the set {x $\in$ M ; a(x) = 0} is strictly positive, then the decay in time of the associated energy is at least logarithmic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信