期望回归的变量筛选和模型平均

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yundong Tu, Siwei Wang
{"title":"期望回归的变量筛选和模型平均","authors":"Yundong Tu,&nbsp;Siwei Wang","doi":"10.1111/obes.12538","DOIUrl":null,"url":null,"abstract":"<p>Expectile regression is a useful tool in modelling data with heterogeneous conditional distributions. This paper introduces two new concepts, i.e. the expectile correlation and expectile partial correlation, which can measure the contribution from each regressor to the response in expectile regression. In ultra-high dimensional setting, the expectile partial correlation, which provides an importance ranking of the predictors, is found useful for variable screening. Theoretical results indicate that the proposed screening procedure can achieve the sure screening set. Additionally, a model selection method via extended Bayesian information criterion (EBIC) and a jackknife model averaging (JMA) method are suggested after the screening step to address model uncertainty. The screening consistency of EBIC, the asymptotic optimality of JMA in the sense of minimizing out-of-sample expectile final prediction error, and the sparsity of JMA weight are then established. Finally, numerical results demonstrate the nice performance of our proposed methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"85 3","pages":"574-598"},"PeriodicalIF":16.4000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Variable Screening and Model Averaging for Expectile Regressions\",\"authors\":\"Yundong Tu,&nbsp;Siwei Wang\",\"doi\":\"10.1111/obes.12538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Expectile regression is a useful tool in modelling data with heterogeneous conditional distributions. This paper introduces two new concepts, i.e. the expectile correlation and expectile partial correlation, which can measure the contribution from each regressor to the response in expectile regression. In ultra-high dimensional setting, the expectile partial correlation, which provides an importance ranking of the predictors, is found useful for variable screening. Theoretical results indicate that the proposed screening procedure can achieve the sure screening set. Additionally, a model selection method via extended Bayesian information criterion (EBIC) and a jackknife model averaging (JMA) method are suggested after the screening step to address model uncertainty. The screening consistency of EBIC, the asymptotic optimality of JMA in the sense of minimizing out-of-sample expectile final prediction error, and the sparsity of JMA weight are then established. Finally, numerical results demonstrate the nice performance of our proposed methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"85 3\",\"pages\":\"574-598\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/obes.12538\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12538","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

期望回归是对具有异质条件分布的数据进行建模的有效工具。本文引入了两个新概念,即期望相关和期望偏相关,它们可以衡量期望回归中每个回归量对响应的贡献。在超高维设置中,期望偏相关,它提供了预测因子的重要性排序,被发现对变量筛选很有用。理论结果表明,所提出的筛选方法能够达到确定的筛选集。针对模型的不确定性,提出了基于扩展贝叶斯信息准则(EBIC)的模型选择方法和基于叠刀模型平均(JMA)的模型选择方法。建立了EBIC的筛选一致性、JMA在最小化样本外预期最终预测误差意义上的渐近最优性以及JMA权值的稀疏性。最后,数值结果验证了所提方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable Screening and Model Averaging for Expectile Regressions

Expectile regression is a useful tool in modelling data with heterogeneous conditional distributions. This paper introduces two new concepts, i.e. the expectile correlation and expectile partial correlation, which can measure the contribution from each regressor to the response in expectile regression. In ultra-high dimensional setting, the expectile partial correlation, which provides an importance ranking of the predictors, is found useful for variable screening. Theoretical results indicate that the proposed screening procedure can achieve the sure screening set. Additionally, a model selection method via extended Bayesian information criterion (EBIC) and a jackknife model averaging (JMA) method are suggested after the screening step to address model uncertainty. The screening consistency of EBIC, the asymptotic optimality of JMA in the sense of minimizing out-of-sample expectile final prediction error, and the sparsity of JMA weight are then established. Finally, numerical results demonstrate the nice performance of our proposed methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信