分段崩落法生产调度新数学模型

IF 1.1 Q3 MINING & MINERAL PROCESSING
M. Shenavar, M. Ataee-Pour, M. Rahmanpour
{"title":"分段崩落法生产调度新数学模型","authors":"M. Shenavar, M. Ataee-Pour, M. Rahmanpour","doi":"10.22044/JME.2020.9139.1804","DOIUrl":null,"url":null,"abstract":"Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production rate for hard rock mining. There are limited studies about long-term production scheduling in the sub-level caving method. In this work, for sub-level caving production scheduling optimization, a new mathematical model with the objective of net present value (NPV) maximization is developed. The general technical and operational constraints of the sub-level caving method such as opening and developments, production capacity, sub-level mining geometry, and ore access are considered in this model. Prior to the application of the scheduling model, the block model is processed to remove the unnecessary blocks. For this purpose, the floating stope algorithm is applied in order to determine the ultimate mine boundary and reduce the number of blocks that consequently reduces the running time of the model. The model is applied to a bauxite mine block model and the maximum NPV is determined, and then the mine development network is designed based on the optimal schedule.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Mathematical Model for Production Scheduling in Sub-level Caving Mining Method\",\"authors\":\"M. Shenavar, M. Ataee-Pour, M. Rahmanpour\",\"doi\":\"10.22044/JME.2020.9139.1804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production rate for hard rock mining. There are limited studies about long-term production scheduling in the sub-level caving method. In this work, for sub-level caving production scheduling optimization, a new mathematical model with the objective of net present value (NPV) maximization is developed. The general technical and operational constraints of the sub-level caving method such as opening and developments, production capacity, sub-level mining geometry, and ore access are considered in this model. Prior to the application of the scheduling model, the block model is processed to remove the unnecessary blocks. For this purpose, the floating stope algorithm is applied in order to determine the ultimate mine boundary and reduce the number of blocks that consequently reduces the running time of the model. The model is applied to a bauxite mine block model and the maximum NPV is determined, and then the mine development network is designed based on the optimal schedule.\",\"PeriodicalId\":45259,\"journal\":{\"name\":\"Journal of Mining and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JME.2020.9139.1804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2020.9139.1804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 2

摘要

地下矿山的生产调度仍然是一个人工过程,由于调度问题的复杂性,不可能通过人工调度达到真正的最优结果。在地下开采方法中,分段崩落法是硬岩开采中常见的一种高产开采方法。对于分段崩落法的长期生产调度问题,目前研究较少。针对分段崩落法生产调度优化问题,建立了以净现值(NPV)最大化为目标的数学模型。该模型考虑了分段崩落法的一般技术和操作约束条件,如开口和发展、生产能力、分段开采几何形状和矿石通道等。在应用调度模型之前,先对块模型进行处理,去除不需要的块。为此,采用浮动采场算法确定最终矿山边界,减少块数,从而缩短模型运行时间。将该模型应用于某铝土矿区块模型,确定了最大净现值,并根据最优方案设计了矿山开发网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Mathematical Model for Production Scheduling in Sub-level Caving Mining Method
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production rate for hard rock mining. There are limited studies about long-term production scheduling in the sub-level caving method. In this work, for sub-level caving production scheduling optimization, a new mathematical model with the objective of net present value (NPV) maximization is developed. The general technical and operational constraints of the sub-level caving method such as opening and developments, production capacity, sub-level mining geometry, and ore access are considered in this model. Prior to the application of the scheduling model, the block model is processed to remove the unnecessary blocks. For this purpose, the floating stope algorithm is applied in order to determine the ultimate mine boundary and reduce the number of blocks that consequently reduces the running time of the model. The model is applied to a bauxite mine block model and the maximum NPV is determined, and then the mine development network is designed based on the optimal schedule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信