{"title":"台式AgarTrap协议:农杆菌介导的多形地茅遗传转化的简单方法。","authors":"Shoko Tsuboyama, Y. Kodama","doi":"10.5511/PLANTBIOTECHNOLOGY.18.0312B","DOIUrl":null,"url":null,"abstract":"Agrobacterium-mediated genetic transformation is a powerful technique in plant biology. We recently developed a simplified Agrobacterium-mediated genetic transformation method for the liverwort Marchantia polymorpha, named AgarTrap (agar-utilized transformation with pouring solutions). AgarTrap is easy to perform; all procedures can be completed within a week using a single plate of solid medium, and basic operations involve simply pouring the appropriate solutions onto the solid medium. Thus far, we have developed three types of AgarTrap methods (S-AgarTrap, G-AgarTrap, and T-AgarTrap) using three different M. polymorpha tissues: sporelings, intact gemmalings, and mature thallus pieces, respectively. Each AgarTrap method can be used to transform tissues at high efficiency, thereby producing sufficient numbers of transformants for study. The ease and efficiency of these AgarTrap methods will likely prompt widespread molecular biological analyses of M. polymorpha. In this review, we describe the basic characteristics of the three AgarTrap methods and present the detailed protocols used in our laboratory.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"35 2 1","pages":"93-99"},"PeriodicalIF":1.4000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5511/PLANTBIOTECHNOLOGY.18.0312B","citationCount":"20","resultStr":"{\"title\":\"AgarTrap Protocols on your Benchtop: Simple Methods for Agrobacterium-mediated Genetic Transformation of the Liverwort Marchantia polymorpha.\",\"authors\":\"Shoko Tsuboyama, Y. Kodama\",\"doi\":\"10.5511/PLANTBIOTECHNOLOGY.18.0312B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agrobacterium-mediated genetic transformation is a powerful technique in plant biology. We recently developed a simplified Agrobacterium-mediated genetic transformation method for the liverwort Marchantia polymorpha, named AgarTrap (agar-utilized transformation with pouring solutions). AgarTrap is easy to perform; all procedures can be completed within a week using a single plate of solid medium, and basic operations involve simply pouring the appropriate solutions onto the solid medium. Thus far, we have developed three types of AgarTrap methods (S-AgarTrap, G-AgarTrap, and T-AgarTrap) using three different M. polymorpha tissues: sporelings, intact gemmalings, and mature thallus pieces, respectively. Each AgarTrap method can be used to transform tissues at high efficiency, thereby producing sufficient numbers of transformants for study. The ease and efficiency of these AgarTrap methods will likely prompt widespread molecular biological analyses of M. polymorpha. In this review, we describe the basic characteristics of the three AgarTrap methods and present the detailed protocols used in our laboratory.\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"35 2 1\",\"pages\":\"93-99\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5511/PLANTBIOTECHNOLOGY.18.0312B\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/PLANTBIOTECHNOLOGY.18.0312B\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/PLANTBIOTECHNOLOGY.18.0312B","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
AgarTrap Protocols on your Benchtop: Simple Methods for Agrobacterium-mediated Genetic Transformation of the Liverwort Marchantia polymorpha.
Agrobacterium-mediated genetic transformation is a powerful technique in plant biology. We recently developed a simplified Agrobacterium-mediated genetic transformation method for the liverwort Marchantia polymorpha, named AgarTrap (agar-utilized transformation with pouring solutions). AgarTrap is easy to perform; all procedures can be completed within a week using a single plate of solid medium, and basic operations involve simply pouring the appropriate solutions onto the solid medium. Thus far, we have developed three types of AgarTrap methods (S-AgarTrap, G-AgarTrap, and T-AgarTrap) using three different M. polymorpha tissues: sporelings, intact gemmalings, and mature thallus pieces, respectively. Each AgarTrap method can be used to transform tissues at high efficiency, thereby producing sufficient numbers of transformants for study. The ease and efficiency of these AgarTrap methods will likely prompt widespread molecular biological analyses of M. polymorpha. In this review, we describe the basic characteristics of the three AgarTrap methods and present the detailed protocols used in our laboratory.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.