调整化学燃料自组装中的动力学捕获

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY
Brigitte A. K. Kriebisch, Christine M. E. Kriebisch, Alexander M. Bergmann, Dr. Caren Wanzke, Dr. Marta Tena-Solsona, Prof. Dr. Job Boekhoven
{"title":"调整化学燃料自组装中的动力学捕获","authors":"Brigitte A. K. Kriebisch,&nbsp;Christine M. E. Kriebisch,&nbsp;Alexander M. Bergmann,&nbsp;Dr. Caren Wanzke,&nbsp;Dr. Marta Tena-Solsona,&nbsp;Prof. Dr. Job Boekhoven","doi":"10.1002/syst.202200035","DOIUrl":null,"url":null,"abstract":"<p>Nature uses dynamic, molecular self-assembly to create cellular architectures that adapt to their environment. For example, a guanosine triphosphate (GTP)-driven reaction cycle activates and deactivates tubulin for dynamic assembly into microtubules. Inspired by dynamic self-assembly in biology, recent studies have developed synthetic analogs of assemblies regulated by chemically fueled reaction cycles. A challenge in these studies is to control the interplay between rapid disassembly and kinetic trapping of building blocks known as dynamic instabilities. In this work, we show how molecular design can tune the tendency of molecules to remain trapped in their assembly. We show how that design can alter the dynamic of emerging assemblies. Our work should give design rules for approaching dynamic instabilities in chemically fueled assemblies to create new adaptive nanotechnologies.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200035","citationCount":"3","resultStr":"{\"title\":\"Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly**\",\"authors\":\"Brigitte A. K. Kriebisch,&nbsp;Christine M. E. Kriebisch,&nbsp;Alexander M. Bergmann,&nbsp;Dr. Caren Wanzke,&nbsp;Dr. Marta Tena-Solsona,&nbsp;Prof. Dr. Job Boekhoven\",\"doi\":\"10.1002/syst.202200035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nature uses dynamic, molecular self-assembly to create cellular architectures that adapt to their environment. For example, a guanosine triphosphate (GTP)-driven reaction cycle activates and deactivates tubulin for dynamic assembly into microtubules. Inspired by dynamic self-assembly in biology, recent studies have developed synthetic analogs of assemblies regulated by chemically fueled reaction cycles. A challenge in these studies is to control the interplay between rapid disassembly and kinetic trapping of building blocks known as dynamic instabilities. In this work, we show how molecular design can tune the tendency of molecules to remain trapped in their assembly. We show how that design can alter the dynamic of emerging assemblies. Our work should give design rules for approaching dynamic instabilities in chemically fueled assemblies to create new adaptive nanotechnologies.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/syst.202200035\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202200035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

大自然利用动态的分子自组装来创造适应环境的细胞结构。例如,三磷酸鸟苷(GTP)驱动的反应循环激活和灭活微管蛋白,以便动态组装成微管。受生物学中动态自组装的启发,最近的研究开发了由化学燃料反应周期调节的组装的合成类似物。这些研究中的一个挑战是如何控制快速拆卸和动态捕获之间的相互作用,即动态不稳定性。在这项工作中,我们展示了分子设计如何调整分子在其组装中保持被困的趋势。我们展示了这种设计如何改变新兴组件的动态。我们的工作应该为接近化学燃料组件的动态不稳定性提供设计规则,以创建新的自适应纳米技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly**

Tuning the Kinetic Trapping in Chemically Fueled Self-Assembly**

Nature uses dynamic, molecular self-assembly to create cellular architectures that adapt to their environment. For example, a guanosine triphosphate (GTP)-driven reaction cycle activates and deactivates tubulin for dynamic assembly into microtubules. Inspired by dynamic self-assembly in biology, recent studies have developed synthetic analogs of assemblies regulated by chemically fueled reaction cycles. A challenge in these studies is to control the interplay between rapid disassembly and kinetic trapping of building blocks known as dynamic instabilities. In this work, we show how molecular design can tune the tendency of molecules to remain trapped in their assembly. We show how that design can alter the dynamic of emerging assemblies. Our work should give design rules for approaching dynamic instabilities in chemically fueled assemblies to create new adaptive nanotechnologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信