用数据抗击COVID-19:对提交2021年西格玛奖的数据新闻项目的分析

IF 0.5 Q4 COMMUNICATION
Liis Auväärt
{"title":"用数据抗击COVID-19:对提交2021年西格玛奖的数据新闻项目的分析","authors":"Liis Auväärt","doi":"10.51480/1899-5101.15.3(32).3","DOIUrl":null,"url":null,"abstract":"Abstract: The COVID-19 health crisis has been heavily reported on an international scale for several years. This has pushed news journalism in a datafied direction: reporters have learnt how to analyse and visualise the statistical effects of COVID-19 on various sectors of society. As a result, in 2021, the international Sigma Awards competition for data journalism highlighted coverage of the pandemic. Using content analysis with qualitative elements, this paper analyses the shortlisted works covering COVID-19 from the competition (n=73). It focuses on the data references made by the teams – sources, type of both reference and data used – showing statistics from official institutions to be the most used type of data. It also lists the main problems journalists had to face while working on their projects. Most often these problems fell into two categories: specific characteristics of the project, mostly ‘time consuming’, and issues with data.","PeriodicalId":40610,"journal":{"name":"Central European Journal of Communication","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fighting COVID-19 with data: An analysis of data journalism projects submitted to Sigma Awards 2021\",\"authors\":\"Liis Auväärt\",\"doi\":\"10.51480/1899-5101.15.3(32).3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The COVID-19 health crisis has been heavily reported on an international scale for several years. This has pushed news journalism in a datafied direction: reporters have learnt how to analyse and visualise the statistical effects of COVID-19 on various sectors of society. As a result, in 2021, the international Sigma Awards competition for data journalism highlighted coverage of the pandemic. Using content analysis with qualitative elements, this paper analyses the shortlisted works covering COVID-19 from the competition (n=73). It focuses on the data references made by the teams – sources, type of both reference and data used – showing statistics from official institutions to be the most used type of data. It also lists the main problems journalists had to face while working on their projects. Most often these problems fell into two categories: specific characteristics of the project, mostly ‘time consuming’, and issues with data.\",\"PeriodicalId\":40610,\"journal\":{\"name\":\"Central European Journal of Communication\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51480/1899-5101.15.3(32).3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51480/1899-5101.15.3(32).3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

摘要:几年来,新冠肺炎健康危机在国际范围内被大量报道。这将新闻报道推向了数据化的方向:记者学会了如何分析和可视化新冠肺炎对社会各阶层的统计影响。因此,2021年,国际西格玛奖数据新闻竞赛突出了对疫情的报道。本文采用定性成分的内容分析方法,对新冠肺炎入围作品(n=73)进行了分析。它侧重于团队提供的数据参考——来源、参考类型和使用的数据——显示官方机构的统计数据是最常用的数据类型。它还列出了记者在从事项目时必须面对的主要问题。这些问题通常分为两类:项目的特定特征(主要是“耗时”)和数据问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fighting COVID-19 with data: An analysis of data journalism projects submitted to Sigma Awards 2021
Abstract: The COVID-19 health crisis has been heavily reported on an international scale for several years. This has pushed news journalism in a datafied direction: reporters have learnt how to analyse and visualise the statistical effects of COVID-19 on various sectors of society. As a result, in 2021, the international Sigma Awards competition for data journalism highlighted coverage of the pandemic. Using content analysis with qualitative elements, this paper analyses the shortlisted works covering COVID-19 from the competition (n=73). It focuses on the data references made by the teams – sources, type of both reference and data used – showing statistics from official institutions to be the most used type of data. It also lists the main problems journalists had to face while working on their projects. Most often these problems fell into two categories: specific characteristics of the project, mostly ‘time consuming’, and issues with data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: Central European Journal of Communication provides an international forum for empirical, critical and interpretative, quantitative and qualitative research examining the role of communication in Central Europe and beyond. The journal welcomes high quality research and analysis from diverse theoretical and methodological approaches, as well as reviews of publications and publishes notes on a wide range of literature on media and communication studies. Submission of original articles is open to all researchers interested in communication and media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信