无界区域中随机板方程的渐近特性

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Xiaobin Yao
{"title":"无界区域中随机板方程的渐近特性","authors":"Xiaobin Yao","doi":"10.1515/ijnsns-2021-0383","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the dynamics of stochastic plate equations with memory in unbounded domains. More specifically, we obtain the uniform in time estimates for solutions of the problem. Based on the estimates above, we prove the existence and uniqueness of random attractors in unbounded domains. Finally, we show the upper semicontinuity of the attractors when stochastic perturbations approaches zero.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior for stochastic plate equations with memory in unbounded domains\",\"authors\":\"Xiaobin Yao\",\"doi\":\"10.1515/ijnsns-2021-0383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate the dynamics of stochastic plate equations with memory in unbounded domains. More specifically, we obtain the uniform in time estimates for solutions of the problem. Based on the estimates above, we prove the existence and uniqueness of random attractors in unbounded domains. Finally, we show the upper semicontinuity of the attractors when stochastic perturbations approaches zero.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0383\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0383","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了无界域中具有记忆的随机板方程的动力学问题。更具体地说,我们获得了问题解的统一时间估计。基于上述估计,我们证明了无界域中随机吸引子的存在性和唯一性。最后,我们证明了当随机扰动接近零时吸引子的上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior for stochastic plate equations with memory in unbounded domains
Abstract In this paper, we investigate the dynamics of stochastic plate equations with memory in unbounded domains. More specifically, we obtain the uniform in time estimates for solutions of the problem. Based on the estimates above, we prove the existence and uniqueness of random attractors in unbounded domains. Finally, we show the upper semicontinuity of the attractors when stochastic perturbations approaches zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信