{"title":"越南平阳省未来土地利用变化预测及景观格局变化评价","authors":"Dang Hung Bui, L. Mucsi","doi":"10.15201/hungeobull.71.4.3","DOIUrl":null,"url":null,"abstract":"The main purpose of this study is to simulate future land use up to 2030 and to evaluate the change in landscape pattern due to land-use change from 1995 to 2030 in Binh Duong province, Vietnam. Land-use maps generated from multi-temporal Landsat images from 1995 to 2020 and various physical and social driving variables were used as inputs. Markov chain and Decision Forest algorithm integrated in Land Change Modeler application of IDRISI software were used to predict quantity and location of future land-use allocation. Meanwhile, FRAGSTATS software was used to calculate landscape metrics at class and landscape levels. The simulation results showed that there will be 253.8 km2 of agricultural land urbanized in the period from 2020 to 2030. The urban areas will gradually expand from the edge of the existing zones and fill the newly planned areas from South to North and Northeast of the province. The results also revealed that the studied landscape was decreasing in dominance and increasing diversity and heterogeneity at landscape level. The processes of dispersion and aggregation were taking place at the same time in the entire landscape and in the urban class. Meanwhile, the classes of agriculture, mining, and greenspace were increasingly dispersed, but the shape of patches was becoming more regular. The water class increased the dispersion and the irregularity of the patch shape. Finally, the landscape metrics of the unused land fluctuated over time.","PeriodicalId":38149,"journal":{"name":"Hungarian Geographical Bulletin","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting the future land-use change and evaluating the change in landscape pattern in Binh Duong province, Vietnam\",\"authors\":\"Dang Hung Bui, L. Mucsi\",\"doi\":\"10.15201/hungeobull.71.4.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this study is to simulate future land use up to 2030 and to evaluate the change in landscape pattern due to land-use change from 1995 to 2030 in Binh Duong province, Vietnam. Land-use maps generated from multi-temporal Landsat images from 1995 to 2020 and various physical and social driving variables were used as inputs. Markov chain and Decision Forest algorithm integrated in Land Change Modeler application of IDRISI software were used to predict quantity and location of future land-use allocation. Meanwhile, FRAGSTATS software was used to calculate landscape metrics at class and landscape levels. The simulation results showed that there will be 253.8 km2 of agricultural land urbanized in the period from 2020 to 2030. The urban areas will gradually expand from the edge of the existing zones and fill the newly planned areas from South to North and Northeast of the province. The results also revealed that the studied landscape was decreasing in dominance and increasing diversity and heterogeneity at landscape level. The processes of dispersion and aggregation were taking place at the same time in the entire landscape and in the urban class. Meanwhile, the classes of agriculture, mining, and greenspace were increasingly dispersed, but the shape of patches was becoming more regular. The water class increased the dispersion and the irregularity of the patch shape. Finally, the landscape metrics of the unused land fluctuated over time.\",\"PeriodicalId\":38149,\"journal\":{\"name\":\"Hungarian Geographical Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Geographical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15201/hungeobull.71.4.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Geographical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15201/hungeobull.71.4.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Predicting the future land-use change and evaluating the change in landscape pattern in Binh Duong province, Vietnam
The main purpose of this study is to simulate future land use up to 2030 and to evaluate the change in landscape pattern due to land-use change from 1995 to 2030 in Binh Duong province, Vietnam. Land-use maps generated from multi-temporal Landsat images from 1995 to 2020 and various physical and social driving variables were used as inputs. Markov chain and Decision Forest algorithm integrated in Land Change Modeler application of IDRISI software were used to predict quantity and location of future land-use allocation. Meanwhile, FRAGSTATS software was used to calculate landscape metrics at class and landscape levels. The simulation results showed that there will be 253.8 km2 of agricultural land urbanized in the period from 2020 to 2030. The urban areas will gradually expand from the edge of the existing zones and fill the newly planned areas from South to North and Northeast of the province. The results also revealed that the studied landscape was decreasing in dominance and increasing diversity and heterogeneity at landscape level. The processes of dispersion and aggregation were taking place at the same time in the entire landscape and in the urban class. Meanwhile, the classes of agriculture, mining, and greenspace were increasingly dispersed, but the shape of patches was becoming more regular. The water class increased the dispersion and the irregularity of the patch shape. Finally, the landscape metrics of the unused land fluctuated over time.