壳聚糖/透明质酸和海藻酸盐纳米羟基磷灰石双相支架有望成为治疗骨关节炎的基质

IF 3.1 Q2 PHARMACOLOGY & PHARMACY
Advanced pharmaceutical bulletin Pub Date : 2024-03-01 Epub Date: 2023-07-22 DOI:10.34172/apb.2024.005
Seyed Abdolvahab Banihashemian, Soheila Zamanlui Benisi, Simzar Hosseinzadeh, Shahrokh Shojaei, Hojjat Allah Abbaszadeh
{"title":"壳聚糖/透明质酸和海藻酸盐纳米羟基磷灰石双相支架有望成为治疗骨关节炎的基质","authors":"Seyed Abdolvahab Banihashemian, Soheila Zamanlui Benisi, Simzar Hosseinzadeh, Shahrokh Shojaei, Hojjat Allah Abbaszadeh","doi":"10.34172/apb.2024.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations.</p><p><strong>Methods: </strong>Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined.</p><p><strong>Results: </strong>Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other.</p><p><strong>Conclusion: </strong>For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.</p>","PeriodicalId":7256,"journal":{"name":"Advanced pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders.\",\"authors\":\"Seyed Abdolvahab Banihashemian, Soheila Zamanlui Benisi, Simzar Hosseinzadeh, Shahrokh Shojaei, Hojjat Allah Abbaszadeh\",\"doi\":\"10.34172/apb.2024.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations.</p><p><strong>Methods: </strong>Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined.</p><p><strong>Results: </strong>Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other.</p><p><strong>Conclusion: </strong>For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.</p>\",\"PeriodicalId\":7256,\"journal\":{\"name\":\"Advanced pharmaceutical bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced pharmaceutical bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/apb.2024.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced pharmaceutical bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/apb.2024.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:再生医学为骨关节炎疾病提供了新的技术,尤其是在考虑同时进行软骨和软骨下再生的情况下。方法:以壳聚糖和透明质酸为软骨相,用海藻酸盐和纳米羟基磷灰石(nHAP)制备成骨层。将这些支架用纤维蛋白胶作为双相支架固定,然后进行检查。结果:扫描电子显微镜(SEM)证实软骨下和软骨层的孔隙率分别为61.45±4.51和44.145±2.81%。通过能量色散X射线(EDAX)进行的组成分析表明了两种水凝胶的各种元素。此外,它们的机械性能表明,尽管与其他组的应变值相同,但双相水凝胶的最高模量和电阻值分别为108.33±5.56和721.135±8.21 KPa。他们的个体检查表明,软骨层的蛋白多糖合成以及软骨下层的碱性磷酸酶(ALP)活性为13.3±2.2 ng。21天后,细胞显示出矿化表面和多边形表型,分别证实了它们对骨和软骨组织的承诺。胶原I和II的免疫染色表明,由于两种细胞类型的旁分泌作用,在双相复合组中,细胞外基质(ECM)分泌更多。结论:首次评估了这种双相支架对两种组织类型的再生能力,结果显示出令人满意的骨和软骨组织细胞承诺。因此,这种支架可以被认为是制备骨关节炎植入物的一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders.

Purpose: Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations.

Methods: Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined.

Results: Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other.

Conclusion: For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced pharmaceutical bulletin
Advanced pharmaceutical bulletin PHARMACOLOGY & PHARMACY-
CiteScore
6.80
自引率
2.80%
发文量
51
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信