{"title":"常见水生植物金鱼藻中铜和锌的生态毒理学评估:生理效应和生物标志物反应","authors":"Pornpailin Luengluetham , Ponlachart Chotikarn , Jongdee Nopparat , Pimchanok Buapet","doi":"10.1016/j.aquabot.2023.103678","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing and discharging chemical products containing trace metals lead to widespread contamination in the aquatic environment. Although copper (Cu) and zinc (Zn) are essential plant micronutrients, excessive concentrations may induce stress and mortality. This study investigated the physiological responses of a common aquatic plant, <em>Ceratophyllum demersum</em>, exposed to Cu (0, 2, 5, 10, and 50 μM) or Zn (0, 50, 100, 500, and 1000 μM) for 3 days. Both Cu and Zn were accumulated in plant tissues. Cu exposure led to severe phytotoxicity effects, manifested as a rapid decrease in photosynthetic efficiency (Fv/Fm and ՓPSII), a significant reduction in pigments and an increase in oxidative stress markers. In contrast, minor effects were observed in Zn-treated plants. In addition, Cu exposure suppressed the expression of D1, rubisco large subunit, and alpha-tubulin proteins but did not affect the PSI-B core subunit of PSI. Our study suggested that Cu is a potent phytotoxin by disturbing the principal reactions of photosynthesis and inducing oxidative stress and protein degradation. The overall health status of <em>C. demersum</em> was assessed by adopting the biomarker response index (BRI) approach. The effects of Cu were categorized as moderate in 2 μM and severe in 5, 10, and 50 μM whereas the effects of Zn were categorized as slight in 50 μM, negligible in 100 μM and major in 500 and 1000 μM. BRI effectively substantiates data interpretation of complex plant responses to trace metals and should be further adapted into biomonitoring suites in aquatic systems.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"188 ","pages":"Article 103678"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ecotoxicological assessment of copper and zinc in a common aquatic plant Ceratophyllum demersum: Physiological effects and biomarker responses\",\"authors\":\"Pornpailin Luengluetham , Ponlachart Chotikarn , Jongdee Nopparat , Pimchanok Buapet\",\"doi\":\"10.1016/j.aquabot.2023.103678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Utilizing and discharging chemical products containing trace metals lead to widespread contamination in the aquatic environment. Although copper (Cu) and zinc (Zn) are essential plant micronutrients, excessive concentrations may induce stress and mortality. This study investigated the physiological responses of a common aquatic plant, <em>Ceratophyllum demersum</em>, exposed to Cu (0, 2, 5, 10, and 50 μM) or Zn (0, 50, 100, 500, and 1000 μM) for 3 days. Both Cu and Zn were accumulated in plant tissues. Cu exposure led to severe phytotoxicity effects, manifested as a rapid decrease in photosynthetic efficiency (Fv/Fm and ՓPSII), a significant reduction in pigments and an increase in oxidative stress markers. In contrast, minor effects were observed in Zn-treated plants. In addition, Cu exposure suppressed the expression of D1, rubisco large subunit, and alpha-tubulin proteins but did not affect the PSI-B core subunit of PSI. Our study suggested that Cu is a potent phytotoxin by disturbing the principal reactions of photosynthesis and inducing oxidative stress and protein degradation. The overall health status of <em>C. demersum</em> was assessed by adopting the biomarker response index (BRI) approach. The effects of Cu were categorized as moderate in 2 μM and severe in 5, 10, and 50 μM whereas the effects of Zn were categorized as slight in 50 μM, negligible in 100 μM and major in 500 and 1000 μM. BRI effectively substantiates data interpretation of complex plant responses to trace metals and should be further adapted into biomonitoring suites in aquatic systems.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"188 \",\"pages\":\"Article 103678\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377023000633\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377023000633","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Ecotoxicological assessment of copper and zinc in a common aquatic plant Ceratophyllum demersum: Physiological effects and biomarker responses
Utilizing and discharging chemical products containing trace metals lead to widespread contamination in the aquatic environment. Although copper (Cu) and zinc (Zn) are essential plant micronutrients, excessive concentrations may induce stress and mortality. This study investigated the physiological responses of a common aquatic plant, Ceratophyllum demersum, exposed to Cu (0, 2, 5, 10, and 50 μM) or Zn (0, 50, 100, 500, and 1000 μM) for 3 days. Both Cu and Zn were accumulated in plant tissues. Cu exposure led to severe phytotoxicity effects, manifested as a rapid decrease in photosynthetic efficiency (Fv/Fm and ՓPSII), a significant reduction in pigments and an increase in oxidative stress markers. In contrast, minor effects were observed in Zn-treated plants. In addition, Cu exposure suppressed the expression of D1, rubisco large subunit, and alpha-tubulin proteins but did not affect the PSI-B core subunit of PSI. Our study suggested that Cu is a potent phytotoxin by disturbing the principal reactions of photosynthesis and inducing oxidative stress and protein degradation. The overall health status of C. demersum was assessed by adopting the biomarker response index (BRI) approach. The effects of Cu were categorized as moderate in 2 μM and severe in 5, 10, and 50 μM whereas the effects of Zn were categorized as slight in 50 μM, negligible in 100 μM and major in 500 and 1000 μM. BRI effectively substantiates data interpretation of complex plant responses to trace metals and should be further adapted into biomonitoring suites in aquatic systems.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.