流体动力学中的大久保·维斯准则:几何方面及其进一步的推广

IF 1.3 4区 工程技术 Q3 MECHANICS
B. Shivamoggi, G. Heijst, L. Kamp
{"title":"流体动力学中的大久保·维斯准则:几何方面及其进一步的推广","authors":"B. Shivamoggi, G. Heijst, L. Kamp","doi":"10.1088/1873-7005/ac495d","DOIUrl":null,"url":null,"abstract":"\n The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Okubo-Weiss criterion in hydrodynamic flows:Geometric aspects and further extension\",\"authors\":\"B. Shivamoggi, G. Heijst, L. Kamp\",\"doi\":\"10.1088/1873-7005/ac495d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/ac495d\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ac495d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

Okubo [5]-Weiss[6]准则作为一种诊断工具被广泛用于将二维(2D)流体动力流场划分为双曲和椭圆区域,并为复杂的定量准则提供有用的定性指导。Okubo-Weiss准则的应用结果经常在经验基础上得到验证。因此,我们将探索Okubo-Weiss准则的拓扑含义,并表明Okubo-Weiss参数在一个正乘法因子内是潜在涡度流形高斯曲率的负值。Okubo-Weiss准则在极坐标系中重新表述,并通过几个例子进行验证,包括Lamb- Oseen涡和Burgers涡。然后将这些发展扩展到二维准地转(QG)流。Okubo-Weiss参数在科里奥利参数的-平面近似下保持鲁棒性。通过对QG流动中准静止涡旋的数值模拟,证明了Okubo-Weiss准则能够很好地将二维流场分离为相干椭圆结构和双曲结构。建立了三维轴对称流的Okubo-Weiss判据,并将其应用于圆形Landau-Squire层流射流中进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Okubo-Weiss criterion in hydrodynamic flows:Geometric aspects and further extension
The Okubo [5]-Weiss [6] criterion has been extensively used as a diagnostic tool to divide a two-dimensional (2D) hydrodynamical flow field into hyperbolic and elliptic regions and to serve as a useful qualitative guide to the complex quantitative criteria. The Okubo-Weiss criterion is frequently validated on empirical grounds by the results ensuing its application. So, we will explore topological implications into the Okubo-Weiss criterion and show the Okubo-Weiss parameter is, to within a positive multiplicative factor, the negative of the Gaussian curvature of the underlying vorticity manifold. The Okubo-Weiss criterion is reformulated in polar coordinates, and is validated via several examples including the Lamb- Oseen vortex, and the Burgers vortex. These developments are then extended to 2D quasi- geostrophic (QG) flows. The Okubo-Weiss parameter is shown to remain robust under the -plane approximation to the Coriolis parameter. The Okubo-Weiss criterion is shown to be able to separate the 2D flow-field into coherent elliptic structures and hyperbolic flow configurations very well via numerical simulations of quasi-stationary vortices in QG flows. An Okubo-Weiss type criterion is formulated for 3D axisymmetric flows, and is validated via application to the round Landau-Squire Laminar jet flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信