{"title":"拉达克西部印度河缝合带Sapi-Shergol蛇绿岩混杂岩的岩石学和地球化学:对岩石成因和构造环境的制约","authors":"I. Bhat, T. Ahmad, D. S. Rao","doi":"10.1086/704254","DOIUrl":null,"url":null,"abstract":"This article reports the existence of subduction-related tholeiitic, normal mid-ocean ridge basalt (N-MORB)-type mafic intrusives emplaced within the Sapi-Shergol ophiolitic mélange of the Indus Suture Zone, western Ladakh. The Shergol mafic intrusives show Fe enrichment with basalt to basaltic-andesite composition. Based on their mineralogy and textures, these mafic rocks can be identified as fine- to medium-grained gabbros that have undergone greenschist-grade metamorphism. These rocks have N-MORB-type geochemical characteristics, exhibiting nearly flat to depleted light rare earth element patterns ((La/Sm)N=0.66–1.05). Petrogenetic modeling suggests <20% partial melting of a depleted MORB-type mantle source, within the spinel peridotite stability. The presence of slightly negative anomalies of high field strength elements like Nb, Zr, and Ti in multielement patterns reflect the influence of subduction zone magmatism. The presence of low-Ti clinopyroxene (En38–50Fe11–25Wo31–43; enstatite-ferrosilite-wollastonite), Ca-rich plagioclase (An2–36; andesine), and pargasitic amphibole also reflects their subduction-related depleted-mantle origin. The MORB–island arc tholeiite signature displayed by the Shergol gabbros intrusive in Shergol peridotites reflect their generation in a mantle wedge associated with the Early Cretaceous intraoceanic subduction within the Neo-Tethys Ocean. They are similar to Spongtang ophiolite gabbros intrusive in the Spongtang ophiolite mantle peridotites from south Ladakh, ophiolitic mélange gabbros from southern Tibet, and Muslim Bagh ophiolite gabbros from Pakistan. Based on this study, we offer a geodynamic model suggesting that the Sapi-Shergol ophiolitic slice was intruded by mafic intrusive rocks that represent the relict of the intraoceanic substratum of the Cretaceous Dras arc complex.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/704254","citationCount":"12","resultStr":"{\"title\":\"Petrology and Geochemistry of Mafic Intrusive Rocks from the Sapi-Shergol Ophiolitic Mélange, Indus Suture Zone, Western Ladakh: Constraints on Petrogenesis and Tectonic Setting\",\"authors\":\"I. Bhat, T. Ahmad, D. S. Rao\",\"doi\":\"10.1086/704254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reports the existence of subduction-related tholeiitic, normal mid-ocean ridge basalt (N-MORB)-type mafic intrusives emplaced within the Sapi-Shergol ophiolitic mélange of the Indus Suture Zone, western Ladakh. The Shergol mafic intrusives show Fe enrichment with basalt to basaltic-andesite composition. Based on their mineralogy and textures, these mafic rocks can be identified as fine- to medium-grained gabbros that have undergone greenschist-grade metamorphism. These rocks have N-MORB-type geochemical characteristics, exhibiting nearly flat to depleted light rare earth element patterns ((La/Sm)N=0.66–1.05). Petrogenetic modeling suggests <20% partial melting of a depleted MORB-type mantle source, within the spinel peridotite stability. The presence of slightly negative anomalies of high field strength elements like Nb, Zr, and Ti in multielement patterns reflect the influence of subduction zone magmatism. The presence of low-Ti clinopyroxene (En38–50Fe11–25Wo31–43; enstatite-ferrosilite-wollastonite), Ca-rich plagioclase (An2–36; andesine), and pargasitic amphibole also reflects their subduction-related depleted-mantle origin. The MORB–island arc tholeiite signature displayed by the Shergol gabbros intrusive in Shergol peridotites reflect their generation in a mantle wedge associated with the Early Cretaceous intraoceanic subduction within the Neo-Tethys Ocean. They are similar to Spongtang ophiolite gabbros intrusive in the Spongtang ophiolite mantle peridotites from south Ladakh, ophiolitic mélange gabbros from southern Tibet, and Muslim Bagh ophiolite gabbros from Pakistan. Based on this study, we offer a geodynamic model suggesting that the Sapi-Shergol ophiolitic slice was intruded by mafic intrusive rocks that represent the relict of the intraoceanic substratum of the Cretaceous Dras arc complex.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1086/704254\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/704254\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/704254","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Petrology and Geochemistry of Mafic Intrusive Rocks from the Sapi-Shergol Ophiolitic Mélange, Indus Suture Zone, Western Ladakh: Constraints on Petrogenesis and Tectonic Setting
This article reports the existence of subduction-related tholeiitic, normal mid-ocean ridge basalt (N-MORB)-type mafic intrusives emplaced within the Sapi-Shergol ophiolitic mélange of the Indus Suture Zone, western Ladakh. The Shergol mafic intrusives show Fe enrichment with basalt to basaltic-andesite composition. Based on their mineralogy and textures, these mafic rocks can be identified as fine- to medium-grained gabbros that have undergone greenschist-grade metamorphism. These rocks have N-MORB-type geochemical characteristics, exhibiting nearly flat to depleted light rare earth element patterns ((La/Sm)N=0.66–1.05). Petrogenetic modeling suggests <20% partial melting of a depleted MORB-type mantle source, within the spinel peridotite stability. The presence of slightly negative anomalies of high field strength elements like Nb, Zr, and Ti in multielement patterns reflect the influence of subduction zone magmatism. The presence of low-Ti clinopyroxene (En38–50Fe11–25Wo31–43; enstatite-ferrosilite-wollastonite), Ca-rich plagioclase (An2–36; andesine), and pargasitic amphibole also reflects their subduction-related depleted-mantle origin. The MORB–island arc tholeiite signature displayed by the Shergol gabbros intrusive in Shergol peridotites reflect their generation in a mantle wedge associated with the Early Cretaceous intraoceanic subduction within the Neo-Tethys Ocean. They are similar to Spongtang ophiolite gabbros intrusive in the Spongtang ophiolite mantle peridotites from south Ladakh, ophiolitic mélange gabbros from southern Tibet, and Muslim Bagh ophiolite gabbros from Pakistan. Based on this study, we offer a geodynamic model suggesting that the Sapi-Shergol ophiolitic slice was intruded by mafic intrusive rocks that represent the relict of the intraoceanic substratum of the Cretaceous Dras arc complex.
期刊介绍:
One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology.
The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.