{"title":"Kℵ0$K^{\\aleph _0}$游戏:顶点着色","authors":"Nathan Bowler, Marit Emde, Florian Gut","doi":"10.1112/mtk.12196","DOIUrl":null,"url":null,"abstract":"<p>We investigate games played between Maker and Breaker on an infinite complete graph whose vertices are coloured with colours from a given set, each colour appearing infinitely often. The players alternately claim edges, Maker's aim being to claim all edges of a sufficiently colourful infinite complete subgraph and Breaker's aim being to prevent this. We show that if there are only finitely many colours, then Maker can obtain a complete subgraph in which all colours appear infinitely often, but that Breaker can prevent this if there are infinitely many colours. Even when there are infinitely many colours, we show that Maker can obtain a complete subgraph in which infinitely many of the colours each appear infinitely often.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12196","citationCount":"0","resultStr":"{\"title\":\"The \\n \\n \\n K\\n \\n ℵ\\n 0\\n \\n \\n $K^{\\\\aleph _0}$\\n game: Vertex colouring\",\"authors\":\"Nathan Bowler, Marit Emde, Florian Gut\",\"doi\":\"10.1112/mtk.12196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate games played between Maker and Breaker on an infinite complete graph whose vertices are coloured with colours from a given set, each colour appearing infinitely often. The players alternately claim edges, Maker's aim being to claim all edges of a sufficiently colourful infinite complete subgraph and Breaker's aim being to prevent this. We show that if there are only finitely many colours, then Maker can obtain a complete subgraph in which all colours appear infinitely often, but that Breaker can prevent this if there are infinitely many colours. Even when there are infinitely many colours, we show that Maker can obtain a complete subgraph in which infinitely many of the colours each appear infinitely often.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12196\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12196\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12196","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We investigate games played between Maker and Breaker on an infinite complete graph whose vertices are coloured with colours from a given set, each colour appearing infinitely often. The players alternately claim edges, Maker's aim being to claim all edges of a sufficiently colourful infinite complete subgraph and Breaker's aim being to prevent this. We show that if there are only finitely many colours, then Maker can obtain a complete subgraph in which all colours appear infinitely often, but that Breaker can prevent this if there are infinitely many colours. Even when there are infinitely many colours, we show that Maker can obtain a complete subgraph in which infinitely many of the colours each appear infinitely often.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.