Prasun K. Mukherjee , Artemio Mendoza-Mendoza , Susanne Zeilinger , Benjamin A. Horwitz
{"title":"真菌寄生作为木霉介导的植物病害抑制机制","authors":"Prasun K. Mukherjee , Artemio Mendoza-Mendoza , Susanne Zeilinger , Benjamin A. Horwitz","doi":"10.1016/j.fbr.2021.11.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Trichoderma</em></span><span><span> spp. are widely used as plant disease biocontrol agents in </span>agriculture<span>. Mycoparasitism, which is an ancestral trait of </span></span><em>Trichoderma</em><span><span>, is one of the most important mechanisms of reducing the pathogen inocula<span>. Mycoparasitism is a complex physiological process that should be viewed in the broad perspective of </span></span>microbial competition<span><span>, and involves the production of enzymes and </span>secondary metabolites. </span></span><em>Trichoderma</em><span> spp. have traditionally been viewed as necrotrophic mycoparasites; however, there are evidences that, at least in some instances, they behave as hemibiotrophs, causing minor damage to the host cell wall and having an intracellular existence in the host cell for a significant period. In this review, we cover different aspects of </span><em>Trichoderma</em> as mycoparasites, ranging from evolution to genomics and interactions with “non-target” fungi.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"39 ","pages":"Pages 15-33"},"PeriodicalIF":5.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases\",\"authors\":\"Prasun K. Mukherjee , Artemio Mendoza-Mendoza , Susanne Zeilinger , Benjamin A. Horwitz\",\"doi\":\"10.1016/j.fbr.2021.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><em>Trichoderma</em></span><span><span> spp. are widely used as plant disease biocontrol agents in </span>agriculture<span>. Mycoparasitism, which is an ancestral trait of </span></span><em>Trichoderma</em><span><span>, is one of the most important mechanisms of reducing the pathogen inocula<span>. Mycoparasitism is a complex physiological process that should be viewed in the broad perspective of </span></span>microbial competition<span><span>, and involves the production of enzymes and </span>secondary metabolites. </span></span><em>Trichoderma</em><span> spp. have traditionally been viewed as necrotrophic mycoparasites; however, there are evidences that, at least in some instances, they behave as hemibiotrophs, causing minor damage to the host cell wall and having an intracellular existence in the host cell for a significant period. In this review, we cover different aspects of </span><em>Trichoderma</em> as mycoparasites, ranging from evolution to genomics and interactions with “non-target” fungi.</p></div>\",\"PeriodicalId\":12563,\"journal\":{\"name\":\"Fungal Biology Reviews\",\"volume\":\"39 \",\"pages\":\"Pages 15-33\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749461321000567\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461321000567","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases
Trichoderma spp. are widely used as plant disease biocontrol agents in agriculture. Mycoparasitism, which is an ancestral trait of Trichoderma, is one of the most important mechanisms of reducing the pathogen inocula. Mycoparasitism is a complex physiological process that should be viewed in the broad perspective of microbial competition, and involves the production of enzymes and secondary metabolites. Trichoderma spp. have traditionally been viewed as necrotrophic mycoparasites; however, there are evidences that, at least in some instances, they behave as hemibiotrophs, causing minor damage to the host cell wall and having an intracellular existence in the host cell for a significant period. In this review, we cover different aspects of Trichoderma as mycoparasites, ranging from evolution to genomics and interactions with “non-target” fungi.
期刊介绍:
Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.