S. Ganesan, B. Esakki, S. Mathiyazhagan, P. Vikram
{"title":"用于水质评估的两栖无人机概念化和原型化","authors":"S. Ganesan, B. Esakki, S. Mathiyazhagan, P. Vikram","doi":"10.31875/2409-9694.2019.06.8","DOIUrl":null,"url":null,"abstract":"Unmanned Amphibious Aerial Vehicles (UAAV) are gaining significant interest in accessing remote water bodies and an ideal tool for limnologist in water quality assessment. In this article, conceptualization of UAAV by inculcating the principle of hovercraft and multirotor system is carried out in a systematic approach. The unconventional configuration of UAAV makes the conceptual stage as a challenging task in the design process. In order to overcome the challenges and strapped configuration of vehicle design, the authors exploited the design process, Thirteen conceptual models are evolved and the best UAAV design model is selected based on stability, provision for accommodating payload, endurance, air cushioning effect for effective gliding along the water bodies, payload carrying capacity and modularity in construction. In addition, design of payload bay, selection of material, estimation of endurance and center of gravity calculations are carried out for those designs. The finalized conceptual models are constructed and performance of amphibious vehicles is investigated for varying the payload. The conglomerate designs of UAAV are evaluated for the design requirements and the computational fluid dynamic (CFD) analysis is performed to measure its performance characteristics. The experimental prototype of UAAV is custom built to demonstrate the competency of UAAV through flying in air and hovering in water. The test results suggested that, the developed UAAV has tremendous impact on minimizing the efforts of human being in inspecting remote water bodies in proficient way.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"6 1","pages":"66-72"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conceptualization and Prototyping of Unmanned Amphibious Aerial Vehicle for Water Quality Assessment\",\"authors\":\"S. Ganesan, B. Esakki, S. Mathiyazhagan, P. Vikram\",\"doi\":\"10.31875/2409-9694.2019.06.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned Amphibious Aerial Vehicles (UAAV) are gaining significant interest in accessing remote water bodies and an ideal tool for limnologist in water quality assessment. In this article, conceptualization of UAAV by inculcating the principle of hovercraft and multirotor system is carried out in a systematic approach. The unconventional configuration of UAAV makes the conceptual stage as a challenging task in the design process. In order to overcome the challenges and strapped configuration of vehicle design, the authors exploited the design process, Thirteen conceptual models are evolved and the best UAAV design model is selected based on stability, provision for accommodating payload, endurance, air cushioning effect for effective gliding along the water bodies, payload carrying capacity and modularity in construction. In addition, design of payload bay, selection of material, estimation of endurance and center of gravity calculations are carried out for those designs. The finalized conceptual models are constructed and performance of amphibious vehicles is investigated for varying the payload. The conglomerate designs of UAAV are evaluated for the design requirements and the computational fluid dynamic (CFD) analysis is performed to measure its performance characteristics. The experimental prototype of UAAV is custom built to demonstrate the competency of UAAV through flying in air and hovering in water. The test results suggested that, the developed UAAV has tremendous impact on minimizing the efforts of human being in inspecting remote water bodies in proficient way.\",\"PeriodicalId\":73286,\"journal\":{\"name\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"volume\":\"6 1\",\"pages\":\"66-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31875/2409-9694.2019.06.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31875/2409-9694.2019.06.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conceptualization and Prototyping of Unmanned Amphibious Aerial Vehicle for Water Quality Assessment
Unmanned Amphibious Aerial Vehicles (UAAV) are gaining significant interest in accessing remote water bodies and an ideal tool for limnologist in water quality assessment. In this article, conceptualization of UAAV by inculcating the principle of hovercraft and multirotor system is carried out in a systematic approach. The unconventional configuration of UAAV makes the conceptual stage as a challenging task in the design process. In order to overcome the challenges and strapped configuration of vehicle design, the authors exploited the design process, Thirteen conceptual models are evolved and the best UAAV design model is selected based on stability, provision for accommodating payload, endurance, air cushioning effect for effective gliding along the water bodies, payload carrying capacity and modularity in construction. In addition, design of payload bay, selection of material, estimation of endurance and center of gravity calculations are carried out for those designs. The finalized conceptual models are constructed and performance of amphibious vehicles is investigated for varying the payload. The conglomerate designs of UAAV are evaluated for the design requirements and the computational fluid dynamic (CFD) analysis is performed to measure its performance characteristics. The experimental prototype of UAAV is custom built to demonstrate the competency of UAAV through flying in air and hovering in water. The test results suggested that, the developed UAAV has tremendous impact on minimizing the efforts of human being in inspecting remote water bodies in proficient way.