{"title":"科学教育中的承诺和承诺","authors":"Bronwyn Bevan","doi":"10.1080/03057267.2016.1275380","DOIUrl":null,"url":null,"abstract":"Abstract Making is a rapidly emerging form of educational practice that involves the design, construction, testing, and revision of a wide variety of objects, using high and low technologies, and integrating a range of disciplines including art, science, engineering, and mathematics. It has garnered widespread interest and support in both policy and education circles because of the ways it has been shown to link science learning to creativity and investigation. Making has taken root in out-of-school settings, such as museums, science festivals, and afterschool and library programmes; and there is now growing interest from primary and secondary educators in how it might be incorporated into the classroom. Making expands on traditions associated with Technology Education and Design-Based Learning, but differs in ways that can potentially broaden participation in science and STEM learning to include learners from communities historically underrepresented in STEM fields. STEM-Rich Making is centrally organised around design and engineering practices, typically integrating digital tools and computational practices, and positions scientific and mathematical concepts and phenomena as the materials for design. This paper takes a critical view of the claims about Making as a productive form of science teaching and learning, and reviews the current research literature’s substantiation of the ways in which Making supports students’ agency, promotes active participation in science and engineering practices, and leverages learners’ cultural resources.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"53 1","pages":"103 - 75"},"PeriodicalIF":4.7000,"publicationDate":"2017-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03057267.2016.1275380","citationCount":"149","resultStr":"{\"title\":\"The promise and the promises of Making in science education\",\"authors\":\"Bronwyn Bevan\",\"doi\":\"10.1080/03057267.2016.1275380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Making is a rapidly emerging form of educational practice that involves the design, construction, testing, and revision of a wide variety of objects, using high and low technologies, and integrating a range of disciplines including art, science, engineering, and mathematics. It has garnered widespread interest and support in both policy and education circles because of the ways it has been shown to link science learning to creativity and investigation. Making has taken root in out-of-school settings, such as museums, science festivals, and afterschool and library programmes; and there is now growing interest from primary and secondary educators in how it might be incorporated into the classroom. Making expands on traditions associated with Technology Education and Design-Based Learning, but differs in ways that can potentially broaden participation in science and STEM learning to include learners from communities historically underrepresented in STEM fields. STEM-Rich Making is centrally organised around design and engineering practices, typically integrating digital tools and computational practices, and positions scientific and mathematical concepts and phenomena as the materials for design. This paper takes a critical view of the claims about Making as a productive form of science teaching and learning, and reviews the current research literature’s substantiation of the ways in which Making supports students’ agency, promotes active participation in science and engineering practices, and leverages learners’ cultural resources.\",\"PeriodicalId\":49262,\"journal\":{\"name\":\"Studies in Science Education\",\"volume\":\"53 1\",\"pages\":\"103 - 75\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2017-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/03057267.2016.1275380\",\"citationCount\":\"149\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/03057267.2016.1275380\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/03057267.2016.1275380","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
The promise and the promises of Making in science education
Abstract Making is a rapidly emerging form of educational practice that involves the design, construction, testing, and revision of a wide variety of objects, using high and low technologies, and integrating a range of disciplines including art, science, engineering, and mathematics. It has garnered widespread interest and support in both policy and education circles because of the ways it has been shown to link science learning to creativity and investigation. Making has taken root in out-of-school settings, such as museums, science festivals, and afterschool and library programmes; and there is now growing interest from primary and secondary educators in how it might be incorporated into the classroom. Making expands on traditions associated with Technology Education and Design-Based Learning, but differs in ways that can potentially broaden participation in science and STEM learning to include learners from communities historically underrepresented in STEM fields. STEM-Rich Making is centrally organised around design and engineering practices, typically integrating digital tools and computational practices, and positions scientific and mathematical concepts and phenomena as the materials for design. This paper takes a critical view of the claims about Making as a productive form of science teaching and learning, and reviews the current research literature’s substantiation of the ways in which Making supports students’ agency, promotes active participation in science and engineering practices, and leverages learners’ cultural resources.
期刊介绍:
The central aim of Studies in Science Education is to publish review articles of the highest quality which provide analytical syntheses of research into key topics and issues in science education. In addressing this aim, the Editor and Editorial Advisory Board, are guided by a commitment to:
maintaining and developing the highest standards of scholarship associated with the journal;
publishing articles from as wide a range of authors as possible, in relation both to professional background and country of origin;
publishing articles which serve both to consolidate and reflect upon existing fields of study and to promote new areas for research activity.
Studies in Science Education will be of interest to all those involved in science education including: science education researchers, doctoral and masters students; science teachers at elementary, high school and university levels; science education policy makers; science education curriculum developers and text book writers.
Articles featured in Studies in Science Education have been made available either following invitation from the Editor or through potential contributors offering pieces. Given the substantial nature of the review articles, the Editor is willing to give informal feedback on the suitability of proposals though all contributions, whether invited or not, are subject to full peer review. A limited number of books of special interest and concern to those involved in science education are normally reviewed in each volume.