Abdelouahed Lahlali, N. Chafiq, M. Radid, Kamal Moundy, Chaibia Srour
{"title":"整合互动模拟对学生动机、参与、互动和学习成绩发展的影响","authors":"Abdelouahed Lahlali, N. Chafiq, M. Radid, Kamal Moundy, Chaibia Srour","doi":"10.3991/ijet.v18i12.39755","DOIUrl":null,"url":null,"abstract":"The concept of chemical bonding and related concepts are essential topics for the fundamental understanding of chemistry courses by secondary school students. Because of the abstraction aspect, students find it difficult to understand this topic. The aim of this study is to improve students' motivation, engagement, interaction and school results by integrating interactive simulations into the teaching-learning process of chemical bonding concepts. The study was conducted in a secondary school in the Kingdom of Morocco, with a sample of 56 students in the qualifying secondary education cycle. The sample was divided into an experimental group and a control group. The experimental group is taught using more molecular models PhET simulations, while the control group follows the traditional teaching method. Using a quantitative research method with a pre- and post-test design, and an observation grid measuring students' motivation, engagement and interaction before and after the integration of interactive simulations. The data were then analysed using the IBM SPSS 25 program. The results showed that students in the experimental group working with PhET interactive simulations scored significantly higher (p<.01) than students in the control group after the post-test, thus the study showed that there is a positive correlation between students' motivation, engagement, and interaction and their school results during instruction using PhET computer simulations combined with molecular models. Therefore, the results of this study suggest that the teaching-learning of chemistry topics related to chemical bonding can be enhanced using PhET interactive simulations combined with molecular models. This research highlights the usefulness of integrating interactive simulations into the chemistry teaching-learning process.","PeriodicalId":47933,"journal":{"name":"International Journal of Emerging Technologies in Learning","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Integrating Interactive Simulations on the Development of Students’ Motivation, Engagement, Interaction and School Results\",\"authors\":\"Abdelouahed Lahlali, N. Chafiq, M. Radid, Kamal Moundy, Chaibia Srour\",\"doi\":\"10.3991/ijet.v18i12.39755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of chemical bonding and related concepts are essential topics for the fundamental understanding of chemistry courses by secondary school students. Because of the abstraction aspect, students find it difficult to understand this topic. The aim of this study is to improve students' motivation, engagement, interaction and school results by integrating interactive simulations into the teaching-learning process of chemical bonding concepts. The study was conducted in a secondary school in the Kingdom of Morocco, with a sample of 56 students in the qualifying secondary education cycle. The sample was divided into an experimental group and a control group. The experimental group is taught using more molecular models PhET simulations, while the control group follows the traditional teaching method. Using a quantitative research method with a pre- and post-test design, and an observation grid measuring students' motivation, engagement and interaction before and after the integration of interactive simulations. The data were then analysed using the IBM SPSS 25 program. The results showed that students in the experimental group working with PhET interactive simulations scored significantly higher (p<.01) than students in the control group after the post-test, thus the study showed that there is a positive correlation between students' motivation, engagement, and interaction and their school results during instruction using PhET computer simulations combined with molecular models. Therefore, the results of this study suggest that the teaching-learning of chemistry topics related to chemical bonding can be enhanced using PhET interactive simulations combined with molecular models. This research highlights the usefulness of integrating interactive simulations into the chemistry teaching-learning process.\",\"PeriodicalId\":47933,\"journal\":{\"name\":\"International Journal of Emerging Technologies in Learning\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Technologies in Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijet.v18i12.39755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technologies in Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijet.v18i12.39755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
The Effect of Integrating Interactive Simulations on the Development of Students’ Motivation, Engagement, Interaction and School Results
The concept of chemical bonding and related concepts are essential topics for the fundamental understanding of chemistry courses by secondary school students. Because of the abstraction aspect, students find it difficult to understand this topic. The aim of this study is to improve students' motivation, engagement, interaction and school results by integrating interactive simulations into the teaching-learning process of chemical bonding concepts. The study was conducted in a secondary school in the Kingdom of Morocco, with a sample of 56 students in the qualifying secondary education cycle. The sample was divided into an experimental group and a control group. The experimental group is taught using more molecular models PhET simulations, while the control group follows the traditional teaching method. Using a quantitative research method with a pre- and post-test design, and an observation grid measuring students' motivation, engagement and interaction before and after the integration of interactive simulations. The data were then analysed using the IBM SPSS 25 program. The results showed that students in the experimental group working with PhET interactive simulations scored significantly higher (p<.01) than students in the control group after the post-test, thus the study showed that there is a positive correlation between students' motivation, engagement, and interaction and their school results during instruction using PhET computer simulations combined with molecular models. Therefore, the results of this study suggest that the teaching-learning of chemistry topics related to chemical bonding can be enhanced using PhET interactive simulations combined with molecular models. This research highlights the usefulness of integrating interactive simulations into the chemistry teaching-learning process.
期刊介绍:
This interdisciplinary journal focuses on the exchange of relevant trends and research results and presents practical experiences gained while developing and testing elements of technology enhanced learning. It bridges the gap between pure academic research journals and more practical publications. So it covers the full range from research, application development to experience reports and product descriptions. Fields of interest include, but are not limited to: -Software / Distributed Systems -Knowledge Management -Semantic Web -MashUp Technologies -Platforms and Content Authoring -New Learning Models and Applications -Pedagogical and Psychological Issues -Trust / Security -Internet Applications -Networked Tools -Mobile / wireless -Electronics -Visualisation -Bio- / Neuroinformatics -Language /Speech -Collaboration Tools / Collaborative Networks