{"title":"Bayes线性Bayes网络及其在预测指标中的应用","authors":"W. A. J. Al-Taie, M. Farrow","doi":"10.1214/22-ba1314","DOIUrl":null,"url":null,"abstract":". Bayes linear kinematics and Bayes linear Bayes graphical models provide an extension of Bayes linear methods so that full conditional updates may be combined with Bayes linear belief adjustment. The use of Bayes linear kinematics eliminates the problem of non-commutativity which was observed in earlier work involving moment-based belief updates. In this paper we describe this approach and investigate its application to the rapid computation of prognostic index values in survival when a patient’s values may only be available for a subset of covariates. We consider the use of covariates of various kinds and introduce the use of non-conjugate marginal updates. We apply the technique to an example concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear predictor of the lifetime distribution as a latent variable and use its expectation, given whatever covariates are available, as a prognostic index.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayes Linear Bayes Networks with an Application to Prognostic Indices\",\"authors\":\"W. A. J. Al-Taie, M. Farrow\",\"doi\":\"10.1214/22-ba1314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Bayes linear kinematics and Bayes linear Bayes graphical models provide an extension of Bayes linear methods so that full conditional updates may be combined with Bayes linear belief adjustment. The use of Bayes linear kinematics eliminates the problem of non-commutativity which was observed in earlier work involving moment-based belief updates. In this paper we describe this approach and investigate its application to the rapid computation of prognostic index values in survival when a patient’s values may only be available for a subset of covariates. We consider the use of covariates of various kinds and introduce the use of non-conjugate marginal updates. We apply the technique to an example concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear predictor of the lifetime distribution as a latent variable and use its expectation, given whatever covariates are available, as a prognostic index.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ba1314\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1314","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayes Linear Bayes Networks with an Application to Prognostic Indices
. Bayes linear kinematics and Bayes linear Bayes graphical models provide an extension of Bayes linear methods so that full conditional updates may be combined with Bayes linear belief adjustment. The use of Bayes linear kinematics eliminates the problem of non-commutativity which was observed in earlier work involving moment-based belief updates. In this paper we describe this approach and investigate its application to the rapid computation of prognostic index values in survival when a patient’s values may only be available for a subset of covariates. We consider the use of covariates of various kinds and introduce the use of non-conjugate marginal updates. We apply the technique to an example concerning patients with non-Hodgkin’s lymphoma, in which we treat the linear predictor of the lifetime distribution as a latent variable and use its expectation, given whatever covariates are available, as a prognostic index.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.