宇宙弦对具有mie型势的径向本征值解的拓扑效应

IF 1.5 4区 物理与天体物理 Q3 OPTICS
Faizuddin Ahmed
{"title":"宇宙弦对具有mie型势的径向本征值解的拓扑效应","authors":"Faizuddin Ahmed","doi":"10.1140/epjd/s10053-023-00749-8","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, we study the non-relativistic Schrödinger equation with the interaction potential of Mie-type in the background of the topological defects produced by a cosmic string. We determine the radial eigenvalue solution and analyze the effects of the topological defect. It is shown there that the energy levels and wave function of the non-relativistic quantum particles get modified by the topological defect of the geometry compared to the flat space result with this potential. Afterwards, this eigenvalue solution is utilized in some well-known molecular potential models (Kratzer, modified Kratzer, Coulomb potentials), and presents the eigenvalue solutions.</p><p>The time-independent Schrodinger wave equation with potential <span>\\((V(r)=\\frac{\\delta }{r}+\\frac{\\gamma }{r}^{2} +V_{0})\\)</span> in curved space is described by the wave equation <span>\\(\\left[ -\\frac{1}{2\\,M}\\frac{1}{\\sqrt{g}}\\partial _{i}(\\sqrt{g}g^{ij}\\partial _{j})+\\left( \\frac{\\delta }{r}+\\frac{\\gamma }{r}^{2} +V_{0}\\right) \\right] \\Psi =E \\Psi \\)</span>.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"77 9","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological effects of cosmic string on radial eigenvalue solution with Mie-type potential\",\"authors\":\"Faizuddin Ahmed\",\"doi\":\"10.1140/epjd/s10053-023-00749-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this contribution, we study the non-relativistic Schrödinger equation with the interaction potential of Mie-type in the background of the topological defects produced by a cosmic string. We determine the radial eigenvalue solution and analyze the effects of the topological defect. It is shown there that the energy levels and wave function of the non-relativistic quantum particles get modified by the topological defect of the geometry compared to the flat space result with this potential. Afterwards, this eigenvalue solution is utilized in some well-known molecular potential models (Kratzer, modified Kratzer, Coulomb potentials), and presents the eigenvalue solutions.</p><p>The time-independent Schrodinger wave equation with potential <span>\\\\((V(r)=\\\\frac{\\\\delta }{r}+\\\\frac{\\\\gamma }{r}^{2} +V_{0})\\\\)</span> in curved space is described by the wave equation <span>\\\\(\\\\left[ -\\\\frac{1}{2\\\\,M}\\\\frac{1}{\\\\sqrt{g}}\\\\partial _{i}(\\\\sqrt{g}g^{ij}\\\\partial _{j})+\\\\left( \\\\frac{\\\\delta }{r}+\\\\frac{\\\\gamma }{r}^{2} +V_{0}\\\\right) \\\\right] \\\\Psi =E \\\\Psi \\\\)</span>.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"77 9\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-023-00749-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-023-00749-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在宇宙弦产生拓扑缺陷的背景下,研究了具有mie型相互作用势的非相对论性Schrödinger方程。我们确定了径向特征值解,并分析了拓扑缺陷的影响。结果表明,非相对论性量子粒子的能级和波函数受到几何拓扑缺陷的修正,与具有该势的平坦空间结果相比。随后,将该特征值解应用于一些著名的分子势模型(Kratzer、修正Kratzer、Coulomb势),并给出了特征值解。弯曲空间中具有\((V(r)=\frac{\delta }{r}+\frac{\gamma }{r}^{2} +V_{0})\)势的时变薛定谔波动方程用波动方程\(\left[ -\frac{1}{2\,M}\frac{1}{\sqrt{g}}\partial _{i}(\sqrt{g}g^{ij}\partial _{j})+\left( \frac{\delta }{r}+\frac{\gamma }{r}^{2} +V_{0}\right) \right] \Psi =E \Psi \)来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topological effects of cosmic string on radial eigenvalue solution with Mie-type potential

Topological effects of cosmic string on radial eigenvalue solution with Mie-type potential

In this contribution, we study the non-relativistic Schrödinger equation with the interaction potential of Mie-type in the background of the topological defects produced by a cosmic string. We determine the radial eigenvalue solution and analyze the effects of the topological defect. It is shown there that the energy levels and wave function of the non-relativistic quantum particles get modified by the topological defect of the geometry compared to the flat space result with this potential. Afterwards, this eigenvalue solution is utilized in some well-known molecular potential models (Kratzer, modified Kratzer, Coulomb potentials), and presents the eigenvalue solutions.

The time-independent Schrodinger wave equation with potential \((V(r)=\frac{\delta }{r}+\frac{\gamma }{r}^{2} +V_{0})\) in curved space is described by the wave equation \(\left[ -\frac{1}{2\,M}\frac{1}{\sqrt{g}}\partial _{i}(\sqrt{g}g^{ij}\partial _{j})+\left( \frac{\delta }{r}+\frac{\gamma }{r}^{2} +V_{0}\right) \right] \Psi =E \Psi \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信