Yara Kayyali Elalem , Sebastian Maier , Ralf W. Seifert
{"title":"使用深度神经网络预测短生命周期新产品销售的基于机器学习的框架","authors":"Yara Kayyali Elalem , Sebastian Maier , Ralf W. Seifert","doi":"10.1016/j.ijforecast.2022.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales of newly launched, short-lived products that are similar to previous products when there is limited availability of historical sales data for the new product. In addition to exploiting historical data using time-series clustering, we perform data augmentation to generate sufficient sales data and consider two quantitative cluster assignment methods. We apply one traditional statistical (ARIMAX) and three machine learning methods based on deep neural networks (DNNs) – long short-term memory, gated recurrent units, and convolutional neural networks. Using two large data sets, we investigate the forecasting methods’ comparative performance and, for the larger data set, show that clustering generally results in substantially lower forecast errors. Our key empirical finding is that simple ARIMAX considerably outperforms the more advanced DNNs, with mean absolute errors up to 21%–24% lower. However, when adding Gaussian white noise in our robustness analysis, we find that ARIMAX’s performance deteriorates dramatically, whereas the considered DNNs display robust performance. Our results provide insights for practitioners on when to use advanced deep learning methods and when to use traditional methods.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"39 4","pages":"Pages 1874-1894"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks\",\"authors\":\"Yara Kayyali Elalem , Sebastian Maier , Ralf W. Seifert\",\"doi\":\"10.1016/j.ijforecast.2022.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales of newly launched, short-lived products that are similar to previous products when there is limited availability of historical sales data for the new product. In addition to exploiting historical data using time-series clustering, we perform data augmentation to generate sufficient sales data and consider two quantitative cluster assignment methods. We apply one traditional statistical (ARIMAX) and three machine learning methods based on deep neural networks (DNNs) – long short-term memory, gated recurrent units, and convolutional neural networks. Using two large data sets, we investigate the forecasting methods’ comparative performance and, for the larger data set, show that clustering generally results in substantially lower forecast errors. Our key empirical finding is that simple ARIMAX considerably outperforms the more advanced DNNs, with mean absolute errors up to 21%–24% lower. However, when adding Gaussian white noise in our robustness analysis, we find that ARIMAX’s performance deteriorates dramatically, whereas the considered DNNs display robust performance. Our results provide insights for practitioners on when to use advanced deep learning methods and when to use traditional methods.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"39 4\",\"pages\":\"Pages 1874-1894\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207022001364\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207022001364","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks
Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales of newly launched, short-lived products that are similar to previous products when there is limited availability of historical sales data for the new product. In addition to exploiting historical data using time-series clustering, we perform data augmentation to generate sufficient sales data and consider two quantitative cluster assignment methods. We apply one traditional statistical (ARIMAX) and three machine learning methods based on deep neural networks (DNNs) – long short-term memory, gated recurrent units, and convolutional neural networks. Using two large data sets, we investigate the forecasting methods’ comparative performance and, for the larger data set, show that clustering generally results in substantially lower forecast errors. Our key empirical finding is that simple ARIMAX considerably outperforms the more advanced DNNs, with mean absolute errors up to 21%–24% lower. However, when adding Gaussian white noise in our robustness analysis, we find that ARIMAX’s performance deteriorates dramatically, whereas the considered DNNs display robust performance. Our results provide insights for practitioners on when to use advanced deep learning methods and when to use traditional methods.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.