高温含水层储能的储热效率、地表抬升和热力-水力-力学现象

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Rubén Vidal, Sebastià Olivella, Maarten W. Saaltink, François Diaz-Maurin
{"title":"高温含水层储能的储热效率、地表抬升和热力-水力-力学现象","authors":"Rubén Vidal,&nbsp;Sebastià Olivella,&nbsp;Maarten W. Saaltink,&nbsp;François Diaz-Maurin","doi":"10.1186/s40517-022-00233-3","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature aquifer thermal energy storage (HT-ATES) systems can help in balancing energy demand and supply for better use of infrastructures and resources. The aim of these systems is to store high amounts of heat to be reused later. HT-ATES requires addressing problems such as variations of the properties of the aquifer, thermal losses and the uplift of the surface. Coupled thermo-hydro-mechanical (THM) modelling is a good tool to analyse the viability and cost effectiveness of HT-ATES systems and to understand the interaction of processes, such as heat flux, groundwater flow and ground deformation. The main problem of this modelling is its high computational cost. We propose a dimensional and numerical analysis of the thermo-hydro-mechanical behaviour of a pilot HT-ATES. The results of this study have provided information about the dominant thermo-hydraulic fluxes, evolution of the energy efficiency of the system and the role of the hydraulic and thermal loads generated by the injection and extraction of hot water.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00233-3","citationCount":"2","resultStr":"{\"title\":\"Heat storage efficiency, ground surface uplift and thermo-hydro-mechanical phenomena for high-temperature aquifer thermal energy storage\",\"authors\":\"Rubén Vidal,&nbsp;Sebastià Olivella,&nbsp;Maarten W. Saaltink,&nbsp;François Diaz-Maurin\",\"doi\":\"10.1186/s40517-022-00233-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-temperature aquifer thermal energy storage (HT-ATES) systems can help in balancing energy demand and supply for better use of infrastructures and resources. The aim of these systems is to store high amounts of heat to be reused later. HT-ATES requires addressing problems such as variations of the properties of the aquifer, thermal losses and the uplift of the surface. Coupled thermo-hydro-mechanical (THM) modelling is a good tool to analyse the viability and cost effectiveness of HT-ATES systems and to understand the interaction of processes, such as heat flux, groundwater flow and ground deformation. The main problem of this modelling is its high computational cost. We propose a dimensional and numerical analysis of the thermo-hydro-mechanical behaviour of a pilot HT-ATES. The results of this study have provided information about the dominant thermo-hydraulic fluxes, evolution of the energy efficiency of the system and the role of the hydraulic and thermal loads generated by the injection and extraction of hot water.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00233-3\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-022-00233-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00233-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

高温含水层热能储存(HT-ATES)系统可以帮助平衡能源需求和供应,以更好地利用基础设施和资源。这些系统的目的是储存大量的热量供以后再利用。HT-ATES需要解决诸如含水层性质变化、热损失和地表隆起等问题。热-水-机械耦合(THM)建模是分析高温-低温加热系统可行性和成本效益以及了解热通量、地下水流动和地面变形等过程相互作用的良好工具。这种建模的主要问题是计算成本高。我们提出了一个尺寸和数值分析的热-水-力学行为的试点HT-ATES。研究结果揭示了系统的主要热液通量、系统能量效率的演变以及热水注入和抽提产生的水力和热负荷的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat storage efficiency, ground surface uplift and thermo-hydro-mechanical phenomena for high-temperature aquifer thermal energy storage

High-temperature aquifer thermal energy storage (HT-ATES) systems can help in balancing energy demand and supply for better use of infrastructures and resources. The aim of these systems is to store high amounts of heat to be reused later. HT-ATES requires addressing problems such as variations of the properties of the aquifer, thermal losses and the uplift of the surface. Coupled thermo-hydro-mechanical (THM) modelling is a good tool to analyse the viability and cost effectiveness of HT-ATES systems and to understand the interaction of processes, such as heat flux, groundwater flow and ground deformation. The main problem of this modelling is its high computational cost. We propose a dimensional and numerical analysis of the thermo-hydro-mechanical behaviour of a pilot HT-ATES. The results of this study have provided information about the dominant thermo-hydraulic fluxes, evolution of the energy efficiency of the system and the role of the hydraulic and thermal loads generated by the injection and extraction of hot water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信