一种新型三维激光扫描与GPS联合测量系统

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Liang Li , Xingyan Cao , Qiang He , Jie Sun , Bingsong Jia , Xiang Dong
{"title":"一种新型三维激光扫描与GPS联合测量系统","authors":"Liang Li ,&nbsp;Xingyan Cao ,&nbsp;Qiang He ,&nbsp;Jie Sun ,&nbsp;Bingsong Jia ,&nbsp;Xiang Dong","doi":"10.1016/j.crte.2019.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Terrestrial laser scanning (TLS) is widely used because of its ability to quickly acquire high-density and high-precision 3D image and topographic data. However, it can only acquire independent coordinate system points, which restricts its application in large-scale deformation monitoring. In this study, we constructed a measurement system to acquire global coordinate point cloud data by combining TLS and GPS (Global Positioning System). The coordinate values of retro-reflective targets could be acquired in different coordinate systems, the GPS coordinate and the TLS station coordinate, synchronously. Our experiments showed that, after registration with the homonymy points acquired by 30-min short-baseline differential GPS using the ICP algorithm, the positional accuracy of the TLS retro-reflective target center in the global coordinate was better than 10 mm. This high precision meets, for instance, the requirements of coal mining subsidence monitoring. We used our new combined measurement system to acquire and process the point cloud data of a frame structure. The measurements demonstrated the practicability and robustness of the new measurement system.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 7","pages":"Pages 508-516"},"PeriodicalIF":2.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2019.09.004","citationCount":"7","resultStr":"{\"title\":\"A new 3D laser-scanning and GPS combined measurement system\",\"authors\":\"Liang Li ,&nbsp;Xingyan Cao ,&nbsp;Qiang He ,&nbsp;Jie Sun ,&nbsp;Bingsong Jia ,&nbsp;Xiang Dong\",\"doi\":\"10.1016/j.crte.2019.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Terrestrial laser scanning (TLS) is widely used because of its ability to quickly acquire high-density and high-precision 3D image and topographic data. However, it can only acquire independent coordinate system points, which restricts its application in large-scale deformation monitoring. In this study, we constructed a measurement system to acquire global coordinate point cloud data by combining TLS and GPS (Global Positioning System). The coordinate values of retro-reflective targets could be acquired in different coordinate systems, the GPS coordinate and the TLS station coordinate, synchronously. Our experiments showed that, after registration with the homonymy points acquired by 30-min short-baseline differential GPS using the ICP algorithm, the positional accuracy of the TLS retro-reflective target center in the global coordinate was better than 10 mm. This high precision meets, for instance, the requirements of coal mining subsidence monitoring. We used our new combined measurement system to acquire and process the point cloud data of a frame structure. The measurements demonstrated the practicability and robustness of the new measurement system.</p></div>\",\"PeriodicalId\":50651,\"journal\":{\"name\":\"Comptes Rendus Geoscience\",\"volume\":\"351 7\",\"pages\":\"Pages 508-516\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crte.2019.09.004\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631071319301038\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071319301038","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

地面激光扫描(TLS)由于能够快速获取高密度、高精度的三维图像和地形数据而得到了广泛的应用。但它只能获取独立的坐标系点,限制了其在大范围变形监测中的应用。在本研究中,我们将TLS与GPS(全球定位系统)相结合,构建了一个测量系统来获取全球坐标点云数据。反反射目标的坐标值可以在GPS坐标和TLS站坐标两种不同坐标系下同步获取。实验表明,利用ICP算法与30min短基线差分GPS获取的同形点进行配准后,TLS反反射目标中心在全局坐标上的定位精度优于10 mm。这种高精度满足了煤矿开采沉陷监测等方面的要求。我们使用我们的组合测量系统来获取和处理一个框架结构的点云数据。实验证明了该测量系统的实用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new 3D laser-scanning and GPS combined measurement system

Terrestrial laser scanning (TLS) is widely used because of its ability to quickly acquire high-density and high-precision 3D image and topographic data. However, it can only acquire independent coordinate system points, which restricts its application in large-scale deformation monitoring. In this study, we constructed a measurement system to acquire global coordinate point cloud data by combining TLS and GPS (Global Positioning System). The coordinate values of retro-reflective targets could be acquired in different coordinate systems, the GPS coordinate and the TLS station coordinate, synchronously. Our experiments showed that, after registration with the homonymy points acquired by 30-min short-baseline differential GPS using the ICP algorithm, the positional accuracy of the TLS retro-reflective target center in the global coordinate was better than 10 mm. This high precision meets, for instance, the requirements of coal mining subsidence monitoring. We used our new combined measurement system to acquire and process the point cloud data of a frame structure. The measurements demonstrated the practicability and robustness of the new measurement system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Geoscience
Comptes Rendus Geoscience 地学-地球科学综合
CiteScore
2.80
自引率
14.30%
发文量
68
审稿时长
5.9 weeks
期刊介绍: Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community. It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信