{"title":"一维扩散过程的时间不一致停止平衡","authors":"Erhan Bayraktar, Zhenhua Wang, Zhou Zhou","doi":"10.1111/mafi.12385","DOIUrl":null,"url":null,"abstract":"<p>We consider three equilibrium concepts proposed in the literature for time-inconsistent stopping problems, including mild equilibria (introduced in Huang and Nguyen-Huu (2018)), weak equilibria (introduced in Christensen and Lindensjö (2018)), and strong equilibria (introduced in Bayraktar et al. (2021)). The discount function is assumed to be log subadditive and the underlying process is one-dimensional diffusion. We first provide necessary and sufficient conditions for the characterization of weak equilibria. The smooth-fit condition is obtained as a by-product. Next, based on the characterization of weak equilibria, we show that an optimal mild equilibrium is also weak. Then we provide conditions under which a weak equilibrium is strong. We further show that an optimal mild equilibrium is also strong under a certain condition. Finally, we provide several examples including one showing a weak equilibrium may not be strong, and another one showing a strong equilibrium may not be optimal mild.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"33 3","pages":"797-841"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12385","citationCount":"8","resultStr":"{\"title\":\"Equilibria of time-inconsistent stopping for one-dimensional diffusion processes\",\"authors\":\"Erhan Bayraktar, Zhenhua Wang, Zhou Zhou\",\"doi\":\"10.1111/mafi.12385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider three equilibrium concepts proposed in the literature for time-inconsistent stopping problems, including mild equilibria (introduced in Huang and Nguyen-Huu (2018)), weak equilibria (introduced in Christensen and Lindensjö (2018)), and strong equilibria (introduced in Bayraktar et al. (2021)). The discount function is assumed to be log subadditive and the underlying process is one-dimensional diffusion. We first provide necessary and sufficient conditions for the characterization of weak equilibria. The smooth-fit condition is obtained as a by-product. Next, based on the characterization of weak equilibria, we show that an optimal mild equilibrium is also weak. Then we provide conditions under which a weak equilibrium is strong. We further show that an optimal mild equilibrium is also strong under a certain condition. Finally, we provide several examples including one showing a weak equilibrium may not be strong, and another one showing a strong equilibrium may not be optimal mild.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"33 3\",\"pages\":\"797-841\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12385\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12385\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12385","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Equilibria of time-inconsistent stopping for one-dimensional diffusion processes
We consider three equilibrium concepts proposed in the literature for time-inconsistent stopping problems, including mild equilibria (introduced in Huang and Nguyen-Huu (2018)), weak equilibria (introduced in Christensen and Lindensjö (2018)), and strong equilibria (introduced in Bayraktar et al. (2021)). The discount function is assumed to be log subadditive and the underlying process is one-dimensional diffusion. We first provide necessary and sufficient conditions for the characterization of weak equilibria. The smooth-fit condition is obtained as a by-product. Next, based on the characterization of weak equilibria, we show that an optimal mild equilibrium is also weak. Then we provide conditions under which a weak equilibrium is strong. We further show that an optimal mild equilibrium is also strong under a certain condition. Finally, we provide several examples including one showing a weak equilibrium may not be strong, and another one showing a strong equilibrium may not be optimal mild.
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.