纳什条件独立曲线

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Irem Portakal , Javier Sendra–Arranz
{"title":"纳什条件独立曲线","authors":"Irem Portakal ,&nbsp;Javier Sendra–Arranz","doi":"10.1016/j.jsc.2023.102255","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the Spohn conditional independence (CI) variety </span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> of an <em>n</em>-player game <em>X</em><span> for undirected graphical models on </span><em>n</em><span> binary random variables consisting of one edge. For a generic game, we show that </span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span><span> is a smooth irreducible complete intersection curve (Nash conditional independence curve) in the Segre variety </span><span><math><msup><mrow><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and we give an explicit formula for its degree and genus. We prove two universality theorems for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span><span>: The product of any affine real algebraic variety with the real line or any affine real algebraic variety in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> defined by at most <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span> polynomials is isomorphic to an affine open subset of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> for some game <em>X</em>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"122 ","pages":"Article 102255"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nash conditional independence curve\",\"authors\":\"Irem Portakal ,&nbsp;Javier Sendra–Arranz\",\"doi\":\"10.1016/j.jsc.2023.102255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study the Spohn conditional independence (CI) variety </span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> of an <em>n</em>-player game <em>X</em><span> for undirected graphical models on </span><em>n</em><span> binary random variables consisting of one edge. For a generic game, we show that </span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span><span> is a smooth irreducible complete intersection curve (Nash conditional independence curve) in the Segre variety </span><span><math><msup><mrow><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and we give an explicit formula for its degree and genus. We prove two universality theorems for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span><span>: The product of any affine real algebraic variety with the real line or any affine real algebraic variety in </span><span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> defined by at most <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span> polynomials is isomorphic to an affine open subset of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> for some game <em>X</em>.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"122 \",\"pages\":\"Article 102255\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S074771712300069X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712300069X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了n人博弈X的无向图形模型的Spohn条件独立(CI)变量CX。对于一类泛型博弈,我们证明了CX是Segre变量(P1)n−2×P3上的光滑不可约完全相交曲线(纳什条件无关曲线),并给出了它的次和属的显式公式。证明了CX的两个普适定理:Rm中由至多m - 1个多项式定义的任何仿射实代数变量与实直线的乘积或任何仿射实代数变量对某对策X同构于CX的仿射开子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nash conditional independence curve

We study the Spohn conditional independence (CI) variety CX of an n-player game X for undirected graphical models on n binary random variables consisting of one edge. For a generic game, we show that CX is a smooth irreducible complete intersection curve (Nash conditional independence curve) in the Segre variety (P1)n2×P3 and we give an explicit formula for its degree and genus. We prove two universality theorems for CX: The product of any affine real algebraic variety with the real line or any affine real algebraic variety in Rm defined by at most m1 polynomials is isomorphic to an affine open subset of CX for some game X.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信