{"title":"激光材料加工过程传热的数学模型","authors":"Ayman Mostafa, Mamdud Hossain","doi":"10.1016/j.aime.2022.100087","DOIUrl":null,"url":null,"abstract":"<div><p>The article presents development of a new heat transfer model for calculating temperature distribution in porous and non-porous materials during laser cutting. The novelty of this model lies in incorporating melting and vaporization progression of porous media during laser interaction. The modelling has been implemented through a transient finite difference scheme and the results have been validated against experimental data of cutting various materials by laser including rock and metals.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912922000174/pdfft?md5=16326708cd2ddee0cf2605451885e384&pid=1-s2.0-S2666912922000174-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mathematical model for heat transfer during laser material processing\",\"authors\":\"Ayman Mostafa, Mamdud Hossain\",\"doi\":\"10.1016/j.aime.2022.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article presents development of a new heat transfer model for calculating temperature distribution in porous and non-porous materials during laser cutting. The novelty of this model lies in incorporating melting and vaporization progression of porous media during laser interaction. The modelling has been implemented through a transient finite difference scheme and the results have been validated against experimental data of cutting various materials by laser including rock and metals.</p></div>\",\"PeriodicalId\":34573,\"journal\":{\"name\":\"Advances in Industrial and Manufacturing Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666912922000174/pdfft?md5=16326708cd2ddee0cf2605451885e384&pid=1-s2.0-S2666912922000174-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Industrial and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666912922000174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912922000174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Mathematical model for heat transfer during laser material processing
The article presents development of a new heat transfer model for calculating temperature distribution in porous and non-porous materials during laser cutting. The novelty of this model lies in incorporating melting and vaporization progression of porous media during laser interaction. The modelling has been implemented through a transient finite difference scheme and the results have been validated against experimental data of cutting various materials by laser including rock and metals.