O. V. Arzhakova, A. A. Dolgova, A. Yu. Kopnov, A. Yu. Yarysheva, A. L. Volynskii
{"title":"高密度聚乙烯-氢氧化镁纳米复合阻燃高分子材料的高效制备方法","authors":"O. V. Arzhakova, A. A. Dolgova, A. Yu. Kopnov, A. Yu. Yarysheva, A. L. Volynskii","doi":"10.1134/S0012501623600055","DOIUrl":null,"url":null,"abstract":"<p>A novel approach to the development of nanocomposite materials based on high-density polyethylene and an inorganic flame retardant, magnesium hydroxide, via the fundamental strategy of environmental crazing of polymers has been advanced. Efficient methods for incorporation of magnesium nitrate as a precursor into mesoporous polymeric matrices have been proposed, and optimal conditions providing high-conversion in situ hydrolysis of magnesium salt to magnesium hydroxide within the confined space of mesopores of polymeric matrixes have been found. As a result of in situ hydrolysis, spherical or needle-shaped magnesium hydroxide nanoparticles are found to be uniformly distributed within the volume of the high-density polyethylene matrix. The obtained nanocomposite polymeric materials with a low content of magnesium hydroxide nanoparticles (up to 30 wt %) are characterized by reduced flammability and mechanical characteristics comparable to those of the initial polymer.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":"510 2","pages":"95 - 99"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Approach to the Preparation of Flame-Retardant Nanocomposite Polymeric Materials Based on High Density Polyethylene and Magnesium Hydroxide\",\"authors\":\"O. V. Arzhakova, A. A. Dolgova, A. Yu. Kopnov, A. Yu. Yarysheva, A. L. Volynskii\",\"doi\":\"10.1134/S0012501623600055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel approach to the development of nanocomposite materials based on high-density polyethylene and an inorganic flame retardant, magnesium hydroxide, via the fundamental strategy of environmental crazing of polymers has been advanced. Efficient methods for incorporation of magnesium nitrate as a precursor into mesoporous polymeric matrices have been proposed, and optimal conditions providing high-conversion in situ hydrolysis of magnesium salt to magnesium hydroxide within the confined space of mesopores of polymeric matrixes have been found. As a result of in situ hydrolysis, spherical or needle-shaped magnesium hydroxide nanoparticles are found to be uniformly distributed within the volume of the high-density polyethylene matrix. The obtained nanocomposite polymeric materials with a low content of magnesium hydroxide nanoparticles (up to 30 wt %) are characterized by reduced flammability and mechanical characteristics comparable to those of the initial polymer.</p>\",\"PeriodicalId\":532,\"journal\":{\"name\":\"Doklady Physical Chemistry\",\"volume\":\"510 2\",\"pages\":\"95 - 99\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0012501623600055\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0012501623600055","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient Approach to the Preparation of Flame-Retardant Nanocomposite Polymeric Materials Based on High Density Polyethylene and Magnesium Hydroxide
A novel approach to the development of nanocomposite materials based on high-density polyethylene and an inorganic flame retardant, magnesium hydroxide, via the fundamental strategy of environmental crazing of polymers has been advanced. Efficient methods for incorporation of magnesium nitrate as a precursor into mesoporous polymeric matrices have been proposed, and optimal conditions providing high-conversion in situ hydrolysis of magnesium salt to magnesium hydroxide within the confined space of mesopores of polymeric matrixes have been found. As a result of in situ hydrolysis, spherical or needle-shaped magnesium hydroxide nanoparticles are found to be uniformly distributed within the volume of the high-density polyethylene matrix. The obtained nanocomposite polymeric materials with a low content of magnesium hydroxide nanoparticles (up to 30 wt %) are characterized by reduced flammability and mechanical characteristics comparable to those of the initial polymer.
期刊介绍:
Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.