{"title":"湍流旋转Rayleigh–Bénard对流","authors":"R. Ecke, O. Shishkina","doi":"10.1146/annurev-fluid-120720-020446","DOIUrl":null,"url":null,"abstract":"Rotation with thermally induced buoyancy governs many astrophysical and geophysical processes in the atmosphere, ocean, sun, and Earth's liquid-metal outer core. Rotating Rayleigh–Bénard convection (RRBC) is an experimental system that has features of rotation and buoyancy, where a container of height H and temperature difference Δ between its bottom and top is rotated about its vertical axis with angular velocity Ω. The strength of buoyancy is reflected in the Rayleigh number (∼ H 3Δ) and that of the Coriolis force in the Ekman and Rossby numbers (∼Ω−1). Rotation suppresses the convective onset, introduces instabilities, changes the velocity boundary layers, modifies the shape of thermal structures from plumes to vortical columns, affects the large-scale circulation, and can decrease or enhance global heat transport depending on buoyant and Coriolis forcing. RRBC is an extremely rich system, with features directly comparable to geophysical and astrophysical phenomena. Here we review RRBC studies, suggest a unifying heat transport scaling approach for the transition between rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss non-Oberbeck–Boussinesq and centrifugal effects. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Turbulent Rotating Rayleigh–Bénard Convection\",\"authors\":\"R. Ecke, O. Shishkina\",\"doi\":\"10.1146/annurev-fluid-120720-020446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotation with thermally induced buoyancy governs many astrophysical and geophysical processes in the atmosphere, ocean, sun, and Earth's liquid-metal outer core. Rotating Rayleigh–Bénard convection (RRBC) is an experimental system that has features of rotation and buoyancy, where a container of height H and temperature difference Δ between its bottom and top is rotated about its vertical axis with angular velocity Ω. The strength of buoyancy is reflected in the Rayleigh number (∼ H 3Δ) and that of the Coriolis force in the Ekman and Rossby numbers (∼Ω−1). Rotation suppresses the convective onset, introduces instabilities, changes the velocity boundary layers, modifies the shape of thermal structures from plumes to vortical columns, affects the large-scale circulation, and can decrease or enhance global heat transport depending on buoyant and Coriolis forcing. RRBC is an extremely rich system, with features directly comparable to geophysical and astrophysical phenomena. Here we review RRBC studies, suggest a unifying heat transport scaling approach for the transition between rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss non-Oberbeck–Boussinesq and centrifugal effects. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-120720-020446\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-120720-020446","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Rotation with thermally induced buoyancy governs many astrophysical and geophysical processes in the atmosphere, ocean, sun, and Earth's liquid-metal outer core. Rotating Rayleigh–Bénard convection (RRBC) is an experimental system that has features of rotation and buoyancy, where a container of height H and temperature difference Δ between its bottom and top is rotated about its vertical axis with angular velocity Ω. The strength of buoyancy is reflected in the Rayleigh number (∼ H 3Δ) and that of the Coriolis force in the Ekman and Rossby numbers (∼Ω−1). Rotation suppresses the convective onset, introduces instabilities, changes the velocity boundary layers, modifies the shape of thermal structures from plumes to vortical columns, affects the large-scale circulation, and can decrease or enhance global heat transport depending on buoyant and Coriolis forcing. RRBC is an extremely rich system, with features directly comparable to geophysical and astrophysical phenomena. Here we review RRBC studies, suggest a unifying heat transport scaling approach for the transition between rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss non-Oberbeck–Boussinesq and centrifugal effects. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.