{"title":"黎曼流形上改进的hardy不等式","authors":"Kaushik Mohanta, J. Tyagi","doi":"10.1080/17476933.2023.2247998","DOIUrl":null,"url":null,"abstract":"We study the following version of Hardy-type inequality on a domain $\\Omega$ in a Riemannian manifold $(M,g)$: $$ \\int{\\Omega}|\\nabla u|_g^p\\rho^\\alpha dV_g \\geq \\left(\\frac{|p-1+\\beta|}{p}\\right)^p\\int{\\Omega}\\frac{|u|^p|\\nabla \\rho|_g^p}{|\\rho|^p}\\rho^\\alpha dV_g +\\int{\\Omega} V|u|^p\\rho^\\alpha dV_g, \\quad \\forall\\ u\\in C_c^\\infty (\\Omega). $$ We provide sufficient conditions on $p, \\alpha, \\beta,\\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\\mathbb{R}^N$ with $p","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved hardy inequalities on Riemannian manifolds\",\"authors\":\"Kaushik Mohanta, J. Tyagi\",\"doi\":\"10.1080/17476933.2023.2247998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following version of Hardy-type inequality on a domain $\\\\Omega$ in a Riemannian manifold $(M,g)$: $$ \\\\int{\\\\Omega}|\\\\nabla u|_g^p\\\\rho^\\\\alpha dV_g \\\\geq \\\\left(\\\\frac{|p-1+\\\\beta|}{p}\\\\right)^p\\\\int{\\\\Omega}\\\\frac{|u|^p|\\\\nabla \\\\rho|_g^p}{|\\\\rho|^p}\\\\rho^\\\\alpha dV_g +\\\\int{\\\\Omega} V|u|^p\\\\rho^\\\\alpha dV_g, \\\\quad \\\\forall\\\\ u\\\\in C_c^\\\\infty (\\\\Omega). $$ We provide sufficient conditions on $p, \\\\alpha, \\\\beta,\\\\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\\\\mathbb{R}^N$ with $p\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17476933.2023.2247998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17476933.2023.2247998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved hardy inequalities on Riemannian manifolds
We study the following version of Hardy-type inequality on a domain $\Omega$ in a Riemannian manifold $(M,g)$: $$ \int{\Omega}|\nabla u|_g^p\rho^\alpha dV_g \geq \left(\frac{|p-1+\beta|}{p}\right)^p\int{\Omega}\frac{|u|^p|\nabla \rho|_g^p}{|\rho|^p}\rho^\alpha dV_g +\int{\Omega} V|u|^p\rho^\alpha dV_g, \quad \forall\ u\in C_c^\infty (\Omega). $$ We provide sufficient conditions on $p, \alpha, \beta,\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\mathbb{R}^N$ with $p