黎曼流形上改进的hardy不等式

Pub Date : 2023-08-20 DOI:10.1080/17476933.2023.2247998
Kaushik Mohanta, J. Tyagi
{"title":"黎曼流形上改进的hardy不等式","authors":"Kaushik Mohanta, J. Tyagi","doi":"10.1080/17476933.2023.2247998","DOIUrl":null,"url":null,"abstract":"We study the following version of Hardy-type inequality on a domain $\\Omega$ in a Riemannian manifold $(M,g)$: $$ \\int{\\Omega}|\\nabla u|_g^p\\rho^\\alpha dV_g \\geq \\left(\\frac{|p-1+\\beta|}{p}\\right)^p\\int{\\Omega}\\frac{|u|^p|\\nabla \\rho|_g^p}{|\\rho|^p}\\rho^\\alpha dV_g +\\int{\\Omega} V|u|^p\\rho^\\alpha dV_g, \\quad \\forall\\ u\\in C_c^\\infty (\\Omega). $$ We provide sufficient conditions on $p, \\alpha, \\beta,\\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\\mathbb{R}^N$ with $p","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved hardy inequalities on Riemannian manifolds\",\"authors\":\"Kaushik Mohanta, J. Tyagi\",\"doi\":\"10.1080/17476933.2023.2247998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following version of Hardy-type inequality on a domain $\\\\Omega$ in a Riemannian manifold $(M,g)$: $$ \\\\int{\\\\Omega}|\\\\nabla u|_g^p\\\\rho^\\\\alpha dV_g \\\\geq \\\\left(\\\\frac{|p-1+\\\\beta|}{p}\\\\right)^p\\\\int{\\\\Omega}\\\\frac{|u|^p|\\\\nabla \\\\rho|_g^p}{|\\\\rho|^p}\\\\rho^\\\\alpha dV_g +\\\\int{\\\\Omega} V|u|^p\\\\rho^\\\\alpha dV_g, \\\\quad \\\\forall\\\\ u\\\\in C_c^\\\\infty (\\\\Omega). $$ We provide sufficient conditions on $p, \\\\alpha, \\\\beta,\\\\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\\\\mathbb{R}^N$ with $p\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17476933.2023.2247998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17476933.2023.2247998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了黎曼流形$(M,g)$中域$\Omega$上的Hardy型不等式的以下版本:$$\int V_g,\quad\forall\u\在C_C^\infty(\Omega)中。$$我们在$p,\alpha,\beta,\rho$和$V$上提供了上述不等式成立的充分条件。这推广了早期著名的关于黎曼流形上Hardy不等式的工作。函数设置涵盖了各种各样的特殊情况,并进行了简要讨论:例如,$\mathbb{R}^N$与$p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Improved hardy inequalities on Riemannian manifolds
We study the following version of Hardy-type inequality on a domain $\Omega$ in a Riemannian manifold $(M,g)$: $$ \int{\Omega}|\nabla u|_g^p\rho^\alpha dV_g \geq \left(\frac{|p-1+\beta|}{p}\right)^p\int{\Omega}\frac{|u|^p|\nabla \rho|_g^p}{|\rho|^p}\rho^\alpha dV_g +\int{\Omega} V|u|^p\rho^\alpha dV_g, \quad \forall\ u\in C_c^\infty (\Omega). $$ We provide sufficient conditions on $p, \alpha, \beta,\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\mathbb{R}^N$ with $p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信