黎曼流形上改进的hardy不等式

IF 0.6 4区 数学 Q3 MATHEMATICS
Kaushik Mohanta, J. Tyagi
{"title":"黎曼流形上改进的hardy不等式","authors":"Kaushik Mohanta, J. Tyagi","doi":"10.1080/17476933.2023.2247998","DOIUrl":null,"url":null,"abstract":"We study the following version of Hardy-type inequality on a domain $\\Omega$ in a Riemannian manifold $(M,g)$: $$ \\int{\\Omega}|\\nabla u|_g^p\\rho^\\alpha dV_g \\geq \\left(\\frac{|p-1+\\beta|}{p}\\right)^p\\int{\\Omega}\\frac{|u|^p|\\nabla \\rho|_g^p}{|\\rho|^p}\\rho^\\alpha dV_g +\\int{\\Omega} V|u|^p\\rho^\\alpha dV_g, \\quad \\forall\\ u\\in C_c^\\infty (\\Omega). $$ We provide sufficient conditions on $p, \\alpha, \\beta,\\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\\mathbb{R}^N$ with $p","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved hardy inequalities on Riemannian manifolds\",\"authors\":\"Kaushik Mohanta, J. Tyagi\",\"doi\":\"10.1080/17476933.2023.2247998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following version of Hardy-type inequality on a domain $\\\\Omega$ in a Riemannian manifold $(M,g)$: $$ \\\\int{\\\\Omega}|\\\\nabla u|_g^p\\\\rho^\\\\alpha dV_g \\\\geq \\\\left(\\\\frac{|p-1+\\\\beta|}{p}\\\\right)^p\\\\int{\\\\Omega}\\\\frac{|u|^p|\\\\nabla \\\\rho|_g^p}{|\\\\rho|^p}\\\\rho^\\\\alpha dV_g +\\\\int{\\\\Omega} V|u|^p\\\\rho^\\\\alpha dV_g, \\\\quad \\\\forall\\\\ u\\\\in C_c^\\\\infty (\\\\Omega). $$ We provide sufficient conditions on $p, \\\\alpha, \\\\beta,\\\\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\\\\mathbb{R}^N$ with $p\",\"PeriodicalId\":51229,\"journal\":{\"name\":\"Complex Variables and Elliptic Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables and Elliptic Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17476933.2023.2247998\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables and Elliptic Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17476933.2023.2247998","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了黎曼流形$(M,g)$中域$\Omega$上的Hardy型不等式的以下版本:$$\int V_g,\quad\forall\u\在C_C^\infty(\Omega)中。$$我们在$p,\alpha,\beta,\rho$和$V$上提供了上述不等式成立的充分条件。这推广了早期著名的关于黎曼流形上Hardy不等式的工作。函数设置涵盖了各种各样的特殊情况,并进行了简要讨论:例如,$\mathbb{R}^N$与$p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved hardy inequalities on Riemannian manifolds
We study the following version of Hardy-type inequality on a domain $\Omega$ in a Riemannian manifold $(M,g)$: $$ \int{\Omega}|\nabla u|_g^p\rho^\alpha dV_g \geq \left(\frac{|p-1+\beta|}{p}\right)^p\int{\Omega}\frac{|u|^p|\nabla \rho|_g^p}{|\rho|^p}\rho^\alpha dV_g +\int{\Omega} V|u|^p\rho^\alpha dV_g, \quad \forall\ u\in C_c^\infty (\Omega). $$ We provide sufficient conditions on $p, \alpha, \beta,\rho$ and $V$ for which the above inequality holds. This generalizes earlier well-known works on Hardy inequalities on Riemannian manifolds. The functional setup covers a wide variety of particular cases, which are discussed briefly: for example, $\mathbb{R}^N$ with $p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
11.10%
发文量
97
审稿时长
6-12 weeks
期刊介绍: Complex Variables and Elliptic Equations is devoted to complex variables and elliptic equations including linear and nonlinear equations and systems, function theoretical methods and applications, functional analytic, topological and variational methods, spectral theory, sub-elliptic and hypoelliptic equations, multivariable complex analysis and analysis on Lie groups, homogeneous spaces and CR-manifolds. The Journal was formally published as Complex Variables Theory and Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信