{"title":"噻唑衍生物对小鼠淋巴瘤细胞内结构和功能的影响","authors":"V. Hreniukh, N. Finiuk, Ya. R. Shalai","doi":"10.15407/ubj92.02.121","DOIUrl":null,"url":null,"abstract":"Thiazole derivatives have cytotoxic effects towards tumor cells, such as glioblastoma, melanoma, leukemia and lymphoma. However, the intracellular mechanism of this action is not clear. The aim of our study was to investigate the action of N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) and 7-benzyl-8-methyl-2-propylpyrazolo[4,3-e]thiazolo[3,2-a]pyrimidin-4(2H)-one (PP2) on cellular structure, and bioenergetic functions of mitochondria in Nemeth-Kellner lymphoma cells (NK/Ly). The structure of treated NK/Ly cells and their mitochondria was examined using electron microscopy. The rate of oxygen uptake by isolated mitochondria was recorded by a polarographic method using a Clark electrode. The mitochondrial potential relative values were registered using fluorescence dye rhodamine 123. In the short-term (15 min), incubation with BF1 and PP2 in 10 and 50 μM concentrations induced apoptotic and necrotic changes in the structure of NK/Ly cells, such as fragmentation and disintegration of the nucleus, destruction of the plasma membrane, and an increase in numbers of lysosomes and mitochondria. a polarographic method did not show significant metabolic shifts in lymphoma mitochondria, in either in vitro or ex vivo actions of the thiazole derivatives. However, fluorescent microscopy showed a significant decrease in mitochondria potential, following a 15 min incubation of cells with 50 μM of PP2. Thus, the electron and fluorescent microscopy data suggest that mitochondria are involved in the mechanism of cytotoxic action of the studied thiazole derivatives.","PeriodicalId":23448,"journal":{"name":"Ukrainian Biochemical Journal","volume":"92 1","pages":"121-130"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of thiazole derivatives on intracellular structure and functions in murine lymphoma cells\",\"authors\":\"V. Hreniukh, N. Finiuk, Ya. R. Shalai\",\"doi\":\"10.15407/ubj92.02.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thiazole derivatives have cytotoxic effects towards tumor cells, such as glioblastoma, melanoma, leukemia and lymphoma. However, the intracellular mechanism of this action is not clear. The aim of our study was to investigate the action of N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) and 7-benzyl-8-methyl-2-propylpyrazolo[4,3-e]thiazolo[3,2-a]pyrimidin-4(2H)-one (PP2) on cellular structure, and bioenergetic functions of mitochondria in Nemeth-Kellner lymphoma cells (NK/Ly). The structure of treated NK/Ly cells and their mitochondria was examined using electron microscopy. The rate of oxygen uptake by isolated mitochondria was recorded by a polarographic method using a Clark electrode. The mitochondrial potential relative values were registered using fluorescence dye rhodamine 123. In the short-term (15 min), incubation with BF1 and PP2 in 10 and 50 μM concentrations induced apoptotic and necrotic changes in the structure of NK/Ly cells, such as fragmentation and disintegration of the nucleus, destruction of the plasma membrane, and an increase in numbers of lysosomes and mitochondria. a polarographic method did not show significant metabolic shifts in lymphoma mitochondria, in either in vitro or ex vivo actions of the thiazole derivatives. However, fluorescent microscopy showed a significant decrease in mitochondria potential, following a 15 min incubation of cells with 50 μM of PP2. Thus, the electron and fluorescent microscopy data suggest that mitochondria are involved in the mechanism of cytotoxic action of the studied thiazole derivatives.\",\"PeriodicalId\":23448,\"journal\":{\"name\":\"Ukrainian Biochemical Journal\",\"volume\":\"92 1\",\"pages\":\"121-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Biochemical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ubj92.02.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Biochemical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ubj92.02.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effects of thiazole derivatives on intracellular structure and functions in murine lymphoma cells
Thiazole derivatives have cytotoxic effects towards tumor cells, such as glioblastoma, melanoma, leukemia and lymphoma. However, the intracellular mechanism of this action is not clear. The aim of our study was to investigate the action of N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide (BF1) and 7-benzyl-8-methyl-2-propylpyrazolo[4,3-e]thiazolo[3,2-a]pyrimidin-4(2H)-one (PP2) on cellular structure, and bioenergetic functions of mitochondria in Nemeth-Kellner lymphoma cells (NK/Ly). The structure of treated NK/Ly cells and their mitochondria was examined using electron microscopy. The rate of oxygen uptake by isolated mitochondria was recorded by a polarographic method using a Clark electrode. The mitochondrial potential relative values were registered using fluorescence dye rhodamine 123. In the short-term (15 min), incubation with BF1 and PP2 in 10 and 50 μM concentrations induced apoptotic and necrotic changes in the structure of NK/Ly cells, such as fragmentation and disintegration of the nucleus, destruction of the plasma membrane, and an increase in numbers of lysosomes and mitochondria. a polarographic method did not show significant metabolic shifts in lymphoma mitochondria, in either in vitro or ex vivo actions of the thiazole derivatives. However, fluorescent microscopy showed a significant decrease in mitochondria potential, following a 15 min incubation of cells with 50 μM of PP2. Thus, the electron and fluorescent microscopy data suggest that mitochondria are involved in the mechanism of cytotoxic action of the studied thiazole derivatives.
期刊介绍:
The Ukrainian Biochemical Journal publishes original research papers, reviews and brief notes; papers on research methods and techniques; articles on the history of biochemistry, its development and prominent figures; discussion articles; book reviews; chronicles; etc. The journal scope includes not only biochemistry but also related sciences, such as cellular and molecular biology, bioorganic chemistry, biophysics, pharmacology, genetics, and medicine (medical biochemistry et al.) – insofar as the studies use biochemical methods and discuss biochemical findings.