可生物降解吉西他滨负载微型装置,具有持续的局部给药和提高肿瘤复发抑制能力,用于胰腺肿瘤术后治疗

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Xiangming Kong, Miao Feng, Lihuang Wu, Yiyan He, Hongli Mao, Zhongwei Gu
{"title":"可生物降解吉西他滨负载微型装置,具有持续的局部给药和提高肿瘤复发抑制能力,用于胰腺肿瘤术后治疗","authors":"Xiangming Kong, Miao Feng, Lihuang Wu, Yiyan He, Hongli Mao, Zhongwei Gu","doi":"10.1080/10717544.2022.2075984","DOIUrl":null,"url":null,"abstract":"<p><p>At present, the 10-year survival rate of patients with pancreatic cancer is still less than 4%, mainly due to the high cancer recurrence rate caused by incomplete surgery and lack of effective postoperative adjuvant treatment. Systemic chemotherapy remains the only choice for patients after surgery; however, it is accompanied by off-target effects and server systemic toxicity. Herein, we proposed a biodegradable microdevice for local sustained drug delivery and postoperative pancreatic cancer treatment as an alternative and safe option. Biodegradable poly(l-lactic-co-glycolic acid) (P(L)LGA) was developed as the matrix material, gemcitabine hydrochloride (GEM·HCl) was chosen as the therapeutic drug and polyethylene glycol (PEG) was employed as the drug release-controlled regulator. Through adjusting the amount and molecular weight of PEG, the controllable degradation of matrix and the sustained release of GEM·HCl were obtained, thus overcoming the unstable drug release properties of traditional microdevices. The drug release mechanism of microdevice and the regulating action of PEG were studied in detail. More importantly, in the treatment of the postoperative recurrence model of subcutaneous pancreatic tumor in mice, the microdevice showed effective inhibition of postoperative <i>in situ</i> recurrences of pancreatic tumors with excellent biosafety and minimum systemic toxicity. The microdevice developed in this study provides an option for postoperative adjuvant pancreatic treatment, and greatly broadens the application prospects of traditional chemotherapy drugs.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"29 1","pages":"1595-1607"},"PeriodicalIF":6.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176693/pdf/","citationCount":"7","resultStr":"{\"title\":\"Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment.\",\"authors\":\"Xiangming Kong, Miao Feng, Lihuang Wu, Yiyan He, Hongli Mao, Zhongwei Gu\",\"doi\":\"10.1080/10717544.2022.2075984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At present, the 10-year survival rate of patients with pancreatic cancer is still less than 4%, mainly due to the high cancer recurrence rate caused by incomplete surgery and lack of effective postoperative adjuvant treatment. Systemic chemotherapy remains the only choice for patients after surgery; however, it is accompanied by off-target effects and server systemic toxicity. Herein, we proposed a biodegradable microdevice for local sustained drug delivery and postoperative pancreatic cancer treatment as an alternative and safe option. Biodegradable poly(l-lactic-co-glycolic acid) (P(L)LGA) was developed as the matrix material, gemcitabine hydrochloride (GEM·HCl) was chosen as the therapeutic drug and polyethylene glycol (PEG) was employed as the drug release-controlled regulator. Through adjusting the amount and molecular weight of PEG, the controllable degradation of matrix and the sustained release of GEM·HCl were obtained, thus overcoming the unstable drug release properties of traditional microdevices. The drug release mechanism of microdevice and the regulating action of PEG were studied in detail. More importantly, in the treatment of the postoperative recurrence model of subcutaneous pancreatic tumor in mice, the microdevice showed effective inhibition of postoperative <i>in situ</i> recurrences of pancreatic tumors with excellent biosafety and minimum systemic toxicity. The microdevice developed in this study provides an option for postoperative adjuvant pancreatic treatment, and greatly broadens the application prospects of traditional chemotherapy drugs.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"29 1\",\"pages\":\"1595-1607\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176693/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2022.2075984\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2022.2075984","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 7

摘要

摘要目前癌症患者10年生存率仍不到4%,主要是由于手术不全导致癌症复发率高,缺乏有效的术后辅助治疗。全身化疗仍然是患者术后的唯一选择;然而,它伴随着脱靶效应和服务器系统毒性。在此,我们提出了一种可生物降解的微型装置,用于局部持续给药和癌症术后治疗,作为一种替代和安全的选择。以可生物降解的聚乳酸(P(l)LGA)为基质材料,选择盐酸吉西他滨(GEM·HCl)为治疗药物,聚乙二醇(PEG)为控释调节剂。通过调节PEG的用量和分子量,可以实现基质的可控降解和GEM·HCl的缓释,从而克服了传统微器件不稳定的药物释放特性。详细研究了微器件的药物释放机制和PEG的调节作用。更重要的是,在小鼠皮下胰腺肿瘤术后复发模型的治疗中,该微型设备以优异的生物安全性和最小的全身毒性有效抑制了胰腺肿瘤的术后原位复发。本研究开发的微型设备为胰腺术后辅助治疗提供了一种选择,极大地拓宽了传统化疗药物的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment.

At present, the 10-year survival rate of patients with pancreatic cancer is still less than 4%, mainly due to the high cancer recurrence rate caused by incomplete surgery and lack of effective postoperative adjuvant treatment. Systemic chemotherapy remains the only choice for patients after surgery; however, it is accompanied by off-target effects and server systemic toxicity. Herein, we proposed a biodegradable microdevice for local sustained drug delivery and postoperative pancreatic cancer treatment as an alternative and safe option. Biodegradable poly(l-lactic-co-glycolic acid) (P(L)LGA) was developed as the matrix material, gemcitabine hydrochloride (GEM·HCl) was chosen as the therapeutic drug and polyethylene glycol (PEG) was employed as the drug release-controlled regulator. Through adjusting the amount and molecular weight of PEG, the controllable degradation of matrix and the sustained release of GEM·HCl were obtained, thus overcoming the unstable drug release properties of traditional microdevices. The drug release mechanism of microdevice and the regulating action of PEG were studied in detail. More importantly, in the treatment of the postoperative recurrence model of subcutaneous pancreatic tumor in mice, the microdevice showed effective inhibition of postoperative in situ recurrences of pancreatic tumors with excellent biosafety and minimum systemic toxicity. The microdevice developed in this study provides an option for postoperative adjuvant pancreatic treatment, and greatly broadens the application prospects of traditional chemotherapy drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信