Zhangqian Liang , Yanjun Xue , Xinyu Wang , Xiaoli Zhang , Jian Tian , Hongzhi Cui
{"title":"助催化剂硫化钴掺入石墨氮化碳:提升光催化析氢性能及机理探索","authors":"Zhangqian Liang , Yanjun Xue , Xinyu Wang , Xiaoli Zhang , Jian Tian , Hongzhi Cui","doi":"10.1016/j.nanoms.2022.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>2D-layered graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is regarded as a great prospect as a photocatalyst for H<sub>2</sub> generation. However, g-C<sub>3</sub>N<sub>4</sub>'s photocatalytic hydrogen evolution (HER) activity is significantly restricted by the recombination of photocarriers. We find that cobalt sulfide (CoS<sub>2</sub>) as a cocatalyst can promote g-C<sub>3</sub>N<sub>4</sub> nanosheets (NSs) to realize very efficient photocatalytic H<sub>2</sub> generation. The prepared CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrids display highly boosted photocatalytic H<sub>2</sub> generation performance and outstanding cycle stability. The optimized 7%-CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrids show a much improved photocatalytic H<sub>2</sub> generation rate of 36.2 μmol<sup>−1</sup> h<sup>−1</sup>, which is about 180 times as much as bare g-C<sub>3</sub>N<sub>4</sub> (0.2 μmol<sup>−1</sup> h<sup>−1</sup>). In addition, the apparent quantum efficiency (AQE) of all the samples was computed under light at λ=370 nm, in which the AQE of 7%-CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrids is up to 5.72%. The experimental data and the DFT calculation suggest that the CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrid's excellent HER activity is attributable to the lower overpotential and the smaller Co-H bond activation energy for HER. Accordingly, the CoS<sub>2</sub> cocatalyst loading effectively boosts the photocatalytic performance of g-C<sub>3</sub>N<sub>4</sub> for H<sub>2</sub> evolution. The project promotes fast development of high-efficiency photocatalysts and low-cost for photocatalytic H<sub>2</sub> generation.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 2","pages":"Pages 202-209"},"PeriodicalIF":9.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration\",\"authors\":\"Zhangqian Liang , Yanjun Xue , Xinyu Wang , Xiaoli Zhang , Jian Tian , Hongzhi Cui\",\"doi\":\"10.1016/j.nanoms.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>2D-layered graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is regarded as a great prospect as a photocatalyst for H<sub>2</sub> generation. However, g-C<sub>3</sub>N<sub>4</sub>'s photocatalytic hydrogen evolution (HER) activity is significantly restricted by the recombination of photocarriers. We find that cobalt sulfide (CoS<sub>2</sub>) as a cocatalyst can promote g-C<sub>3</sub>N<sub>4</sub> nanosheets (NSs) to realize very efficient photocatalytic H<sub>2</sub> generation. The prepared CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrids display highly boosted photocatalytic H<sub>2</sub> generation performance and outstanding cycle stability. The optimized 7%-CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrids show a much improved photocatalytic H<sub>2</sub> generation rate of 36.2 μmol<sup>−1</sup> h<sup>−1</sup>, which is about 180 times as much as bare g-C<sub>3</sub>N<sub>4</sub> (0.2 μmol<sup>−1</sup> h<sup>−1</sup>). In addition, the apparent quantum efficiency (AQE) of all the samples was computed under light at λ=370 nm, in which the AQE of 7%-CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrids is up to 5.72%. The experimental data and the DFT calculation suggest that the CoS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> hybrid's excellent HER activity is attributable to the lower overpotential and the smaller Co-H bond activation energy for HER. Accordingly, the CoS<sub>2</sub> cocatalyst loading effectively boosts the photocatalytic performance of g-C<sub>3</sub>N<sub>4</sub> for H<sub>2</sub> evolution. The project promotes fast development of high-efficiency photocatalysts and low-cost for photocatalytic H<sub>2</sub> generation.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 2\",\"pages\":\"Pages 202-209\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000162\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000162","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration
2D-layered graphitic carbon nitride (g-C3N4) is regarded as a great prospect as a photocatalyst for H2 generation. However, g-C3N4's photocatalytic hydrogen evolution (HER) activity is significantly restricted by the recombination of photocarriers. We find that cobalt sulfide (CoS2) as a cocatalyst can promote g-C3N4 nanosheets (NSs) to realize very efficient photocatalytic H2 generation. The prepared CoS2/g-C3N4 hybrids display highly boosted photocatalytic H2 generation performance and outstanding cycle stability. The optimized 7%-CoS2/g-C3N4 hybrids show a much improved photocatalytic H2 generation rate of 36.2 μmol−1 h−1, which is about 180 times as much as bare g-C3N4 (0.2 μmol−1 h−1). In addition, the apparent quantum efficiency (AQE) of all the samples was computed under light at λ=370 nm, in which the AQE of 7%-CoS2/g-C3N4 hybrids is up to 5.72%. The experimental data and the DFT calculation suggest that the CoS2/g-C3N4 hybrid's excellent HER activity is attributable to the lower overpotential and the smaller Co-H bond activation energy for HER. Accordingly, the CoS2 cocatalyst loading effectively boosts the photocatalytic performance of g-C3N4 for H2 evolution. The project promotes fast development of high-efficiency photocatalysts and low-cost for photocatalytic H2 generation.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.