Akansha Shrivastava , Mamta Pal , Rakesh Kumar Sharma
{"title":"毕赤酵母作为生产工业重要生物制品的酵母细胞工厂:当前趋势、挑战和未来前景","authors":"Akansha Shrivastava , Mamta Pal , Rakesh Kumar Sharma","doi":"10.1016/j.jobab.2023.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>Yeast has been used as a cell factory for thousands of years to produce a wide variety of complex biofuels, bioproducts, biochemicals, food ingredients, and pharmaceuticals. For a variety of biotechnological production hosts, a few specific genera of yeast have proven themselves. Rapid developments in metabolic engineering and synthetic biology provide a workable long-term supply solution for these substances. In this review, we have covered recent advances in the design of yeast cell factories for the synthesis of terpenoids, alkaloids, phenylpropanoids, and other natural chemicals, primarily focusing on <em>Pichia</em> species. Cutting-edge solutions involving genetic and process engineering have also been discussed. Overall, the review summarized recent advancements and challenges in synthetic and systems biology, as well as initiatives in metabolic engineering aimed at commercializing non-conventional yeasts like <em>Pichia</em>. The processes used in non-traditional yeasts to produce enzymes, therapeutic proteins, lipids, and metabolic products for industrial applications were thoroughly elaborated.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 2","pages":"Pages 108-124"},"PeriodicalIF":20.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects\",\"authors\":\"Akansha Shrivastava , Mamta Pal , Rakesh Kumar Sharma\",\"doi\":\"10.1016/j.jobab.2023.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Yeast has been used as a cell factory for thousands of years to produce a wide variety of complex biofuels, bioproducts, biochemicals, food ingredients, and pharmaceuticals. For a variety of biotechnological production hosts, a few specific genera of yeast have proven themselves. Rapid developments in metabolic engineering and synthetic biology provide a workable long-term supply solution for these substances. In this review, we have covered recent advances in the design of yeast cell factories for the synthesis of terpenoids, alkaloids, phenylpropanoids, and other natural chemicals, primarily focusing on <em>Pichia</em> species. Cutting-edge solutions involving genetic and process engineering have also been discussed. Overall, the review summarized recent advancements and challenges in synthetic and systems biology, as well as initiatives in metabolic engineering aimed at commercializing non-conventional yeasts like <em>Pichia</em>. The processes used in non-traditional yeasts to produce enzymes, therapeutic proteins, lipids, and metabolic products for industrial applications were thoroughly elaborated.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":\"8 2\",\"pages\":\"Pages 108-124\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969823000166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969823000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects
Yeast has been used as a cell factory for thousands of years to produce a wide variety of complex biofuels, bioproducts, biochemicals, food ingredients, and pharmaceuticals. For a variety of biotechnological production hosts, a few specific genera of yeast have proven themselves. Rapid developments in metabolic engineering and synthetic biology provide a workable long-term supply solution for these substances. In this review, we have covered recent advances in the design of yeast cell factories for the synthesis of terpenoids, alkaloids, phenylpropanoids, and other natural chemicals, primarily focusing on Pichia species. Cutting-edge solutions involving genetic and process engineering have also been discussed. Overall, the review summarized recent advancements and challenges in synthetic and systems biology, as well as initiatives in metabolic engineering aimed at commercializing non-conventional yeasts like Pichia. The processes used in non-traditional yeasts to produce enzymes, therapeutic proteins, lipids, and metabolic products for industrial applications were thoroughly elaborated.