X. Yuan, Yubin Xu, T. Lu, F. He, Luhui Zhang, Qixuan He, Jiandong Ye
{"title":"用硅基生物活性玻璃溶胶包封羟基磷灰石生物陶瓷增强其生物活性。","authors":"X. Yuan, Yubin Xu, T. Lu, F. He, Luhui Zhang, Qixuan He, Jiandong Ye","doi":"10.2139/ssrn.3981401","DOIUrl":null,"url":null,"abstract":"Although hydroxyapatite (HA) bioceramic has excellent biocompatibility and osteoconductivity, its high chemical stability results in slow degradation which affects osteogenesis, angiogenesis and clinical applications. Silica-based bioglass (BG) with superior biological performance has been introduced into HA bioceramic to overcome this insufficiency; however, the composite bioceramics are usually prepared by traditional mechanical mixture of HA and BG powders, which tremendously weakens their mechanical performance. In this research, BG-modified HA bioceramics were prepared by the use of BG sol encapsulated HA powders. The results showed that introducing 1 and 3 wt% BG allowed the HA-based bioceramics to maintain the high compressive strength (>300 MPa), improved the apatite mineralization activity, and played an important role in cellular response. The bioceramic modified with 1 wt% BG (1BG/HA) remarkably enhanced in vitro cell proliferation, osteogenic and angiogenic activities. This present work provides a new strategy to improve the biological performance of bioceramics and the HA-based bioceramics with 1 wt% BG can be as a promising candidate material for bone repair.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"128 1","pages":"105104"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol.\",\"authors\":\"X. Yuan, Yubin Xu, T. Lu, F. He, Luhui Zhang, Qixuan He, Jiandong Ye\",\"doi\":\"10.2139/ssrn.3981401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although hydroxyapatite (HA) bioceramic has excellent biocompatibility and osteoconductivity, its high chemical stability results in slow degradation which affects osteogenesis, angiogenesis and clinical applications. Silica-based bioglass (BG) with superior biological performance has been introduced into HA bioceramic to overcome this insufficiency; however, the composite bioceramics are usually prepared by traditional mechanical mixture of HA and BG powders, which tremendously weakens their mechanical performance. In this research, BG-modified HA bioceramics were prepared by the use of BG sol encapsulated HA powders. The results showed that introducing 1 and 3 wt% BG allowed the HA-based bioceramics to maintain the high compressive strength (>300 MPa), improved the apatite mineralization activity, and played an important role in cellular response. The bioceramic modified with 1 wt% BG (1BG/HA) remarkably enhanced in vitro cell proliferation, osteogenic and angiogenic activities. This present work provides a new strategy to improve the biological performance of bioceramics and the HA-based bioceramics with 1 wt% BG can be as a promising candidate material for bone repair.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"128 1\",\"pages\":\"105104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3981401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.3981401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol.
Although hydroxyapatite (HA) bioceramic has excellent biocompatibility and osteoconductivity, its high chemical stability results in slow degradation which affects osteogenesis, angiogenesis and clinical applications. Silica-based bioglass (BG) with superior biological performance has been introduced into HA bioceramic to overcome this insufficiency; however, the composite bioceramics are usually prepared by traditional mechanical mixture of HA and BG powders, which tremendously weakens their mechanical performance. In this research, BG-modified HA bioceramics were prepared by the use of BG sol encapsulated HA powders. The results showed that introducing 1 and 3 wt% BG allowed the HA-based bioceramics to maintain the high compressive strength (>300 MPa), improved the apatite mineralization activity, and played an important role in cellular response. The bioceramic modified with 1 wt% BG (1BG/HA) remarkably enhanced in vitro cell proliferation, osteogenic and angiogenic activities. This present work provides a new strategy to improve the biological performance of bioceramics and the HA-based bioceramics with 1 wt% BG can be as a promising candidate material for bone repair.