有机摩擦改进剂的气相润滑研究

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Jennifer Eickworth, Jonas Wagner, Philipp Daum, Martin Dienwiebel, Thomas Rühle
{"title":"有机摩擦改进剂的气相润滑研究","authors":"Jennifer Eickworth,&nbsp;Jonas Wagner,&nbsp;Philipp Daum,&nbsp;Martin Dienwiebel,&nbsp;Thomas Rühle","doi":"10.1002/ls.1620","DOIUrl":null,"url":null,"abstract":"<p>Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 1","pages":"40-55"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1620","citationCount":"0","resultStr":"{\"title\":\"Gas phase lubrication study with an organic friction modifier\",\"authors\":\"Jennifer Eickworth,&nbsp;Jonas Wagner,&nbsp;Philipp Daum,&nbsp;Martin Dienwiebel,&nbsp;Thomas Rühle\",\"doi\":\"10.1002/ls.1620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":\"35 1\",\"pages\":\"40-55\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1620\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1620","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摩擦改进剂添加剂在润滑摩擦学系统的摩擦磨损控制中起着至关重要的作用。通过将摩擦计集成到真空中的原位表面分析方法系统中,在可控气氛中进行模型实验,可以深入了解添加剂的功能。在这项工作中,在测量摩擦和磨损之前,通过渗出池将有机摩擦改进剂(OFM)的薄层吸附到氧化铁表面。结果表明,与形成均匀层的假设相反,这种OFM积聚在表面的液滴中。液滴数量和半径随着蒸发时间的增加而增加。在摩擦测试中,发现液滴覆盖率低时的摩擦值最小。对于较大的液滴,由于添加剂的毛细管颈在滑动表面之间形成并在摩擦测试过程中被拖动,摩擦会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gas phase lubrication study with an organic friction modifier

Gas phase lubrication study with an organic friction modifier

Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信