{"title":"基于CIFAR-10和EEACL26数据集分类的卷积神经网络接收野数的适宜性","authors":"V. Romanuke","doi":"10.2478/ecce-2018-0019","DOIUrl":null,"url":null,"abstract":"Abstract The topical question studied in this paper is how many receptive fields (filters) a convolutional layer of a convolutional neural network should have. The goal is to find a rule for choosing the most appropriate numbers of filters. The benchmark datasets are principally diverse CIFAR-10 and EEACL26 to use a common network architecture with three convolutional layers whose numbers of filters are changeable. Heterogeneity and sensitiveness of CIFAR-10 with infiniteness and scalability of EEACL26 are believed to be relevant enough for generalization and spreading of the appropriateness of filter numbers. The appropriateness rule is drawn from top accuracies obtained on 10 × 20 × 21 parallelepipeds for three image sizes. They show, knowing that the number of filters of the first convolutional layer should be set greater for the more complex dataset, the rest of appropriate numbers of filters are set at integers, which are multiples of that number. The multipliers make a sequence similar to a progression, e.g., it may be 1, 3, 9, 15 or 1, 2, 8, 16, etc. With only those multipliers, such a rule-of-progression does not give the number of filters for the first convolutional layer.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"14 1","pages":"157 - 163"},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Appropriateness of Numbers of Receptive Fields in Convolutional Neural Networks Based on Classifying CIFAR-10 and EEACL26 Datasets\",\"authors\":\"V. Romanuke\",\"doi\":\"10.2478/ecce-2018-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The topical question studied in this paper is how many receptive fields (filters) a convolutional layer of a convolutional neural network should have. The goal is to find a rule for choosing the most appropriate numbers of filters. The benchmark datasets are principally diverse CIFAR-10 and EEACL26 to use a common network architecture with three convolutional layers whose numbers of filters are changeable. Heterogeneity and sensitiveness of CIFAR-10 with infiniteness and scalability of EEACL26 are believed to be relevant enough for generalization and spreading of the appropriateness of filter numbers. The appropriateness rule is drawn from top accuracies obtained on 10 × 20 × 21 parallelepipeds for three image sizes. They show, knowing that the number of filters of the first convolutional layer should be set greater for the more complex dataset, the rest of appropriate numbers of filters are set at integers, which are multiples of that number. The multipliers make a sequence similar to a progression, e.g., it may be 1, 3, 9, 15 or 1, 2, 8, 16, etc. With only those multipliers, such a rule-of-progression does not give the number of filters for the first convolutional layer.\",\"PeriodicalId\":42365,\"journal\":{\"name\":\"Electrical Control and Communication Engineering\",\"volume\":\"14 1\",\"pages\":\"157 - 163\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Control and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ecce-2018-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2018-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Appropriateness of Numbers of Receptive Fields in Convolutional Neural Networks Based on Classifying CIFAR-10 and EEACL26 Datasets
Abstract The topical question studied in this paper is how many receptive fields (filters) a convolutional layer of a convolutional neural network should have. The goal is to find a rule for choosing the most appropriate numbers of filters. The benchmark datasets are principally diverse CIFAR-10 and EEACL26 to use a common network architecture with three convolutional layers whose numbers of filters are changeable. Heterogeneity and sensitiveness of CIFAR-10 with infiniteness and scalability of EEACL26 are believed to be relevant enough for generalization and spreading of the appropriateness of filter numbers. The appropriateness rule is drawn from top accuracies obtained on 10 × 20 × 21 parallelepipeds for three image sizes. They show, knowing that the number of filters of the first convolutional layer should be set greater for the more complex dataset, the rest of appropriate numbers of filters are set at integers, which are multiples of that number. The multipliers make a sequence similar to a progression, e.g., it may be 1, 3, 9, 15 or 1, 2, 8, 16, etc. With only those multipliers, such a rule-of-progression does not give the number of filters for the first convolutional layer.