{"title":"城市建筑能源建模(UBEM):挑战与机遇的系统回顾","authors":"Dezhou Kong, Ali Cheshmehzangi, Zhiang Zhang, Saeid Pourroostaei Ardakani, Tingyue Gu","doi":"10.1007/s12053-023-10147-z","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, urban energy consumption and carbon emissions have expanded rapidly on a global scale. Building sector, in particular, accounts for approximately 40% of overall energy use. Urban planners and decision-makers have a significant responsibility to achieve sustainable energy and climate objectives. Urban building energy modeling (UBEM) has increased in popularity in recent years as a tool for calculating urban-scale energy use in buildings with limited resources, and that facilitated the formulation of new energy policies. However, published studies of UBEM methodologies and tools lack comprehensive examinations of the potential limitations of research and the prospects of future opportunities. This paper provides a complete conceptual framework for UBEM based on extensive literature reviews and prior researchers’ work. In addition to providing a comprehensive understanding of the various UBEM approaches and tools, future research directions are explored. The results demonstrate that earlier researches did not adequately account for input uncertainty and lacked proper simulation and calibration control for algorithms/models. These challenges not only increased the workload and computational burden of modelers but also diminished the precision of model calculations. In response, this paper provides targeted recommendations for each essential phase of the present UBEM workflow, namely model input, model development, and model calibration, to address these limitations, as well as a comprehensive analysis of future prospects. The main aim of the research is to further UBEM development as a faster, more accurate and multiscale supportive tool and establish a framework for future UBEM methods.</p></div>","PeriodicalId":537,"journal":{"name":"Energy Efficiency","volume":"16 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban building energy modeling (UBEM): a systematic review of challenges and opportunities\",\"authors\":\"Dezhou Kong, Ali Cheshmehzangi, Zhiang Zhang, Saeid Pourroostaei Ardakani, Tingyue Gu\",\"doi\":\"10.1007/s12053-023-10147-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent decades, urban energy consumption and carbon emissions have expanded rapidly on a global scale. Building sector, in particular, accounts for approximately 40% of overall energy use. Urban planners and decision-makers have a significant responsibility to achieve sustainable energy and climate objectives. Urban building energy modeling (UBEM) has increased in popularity in recent years as a tool for calculating urban-scale energy use in buildings with limited resources, and that facilitated the formulation of new energy policies. However, published studies of UBEM methodologies and tools lack comprehensive examinations of the potential limitations of research and the prospects of future opportunities. This paper provides a complete conceptual framework for UBEM based on extensive literature reviews and prior researchers’ work. In addition to providing a comprehensive understanding of the various UBEM approaches and tools, future research directions are explored. The results demonstrate that earlier researches did not adequately account for input uncertainty and lacked proper simulation and calibration control for algorithms/models. These challenges not only increased the workload and computational burden of modelers but also diminished the precision of model calculations. In response, this paper provides targeted recommendations for each essential phase of the present UBEM workflow, namely model input, model development, and model calibration, to address these limitations, as well as a comprehensive analysis of future prospects. The main aim of the research is to further UBEM development as a faster, more accurate and multiscale supportive tool and establish a framework for future UBEM methods.</p></div>\",\"PeriodicalId\":537,\"journal\":{\"name\":\"Energy Efficiency\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Efficiency\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12053-023-10147-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Efficiency","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12053-023-10147-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Urban building energy modeling (UBEM): a systematic review of challenges and opportunities
In recent decades, urban energy consumption and carbon emissions have expanded rapidly on a global scale. Building sector, in particular, accounts for approximately 40% of overall energy use. Urban planners and decision-makers have a significant responsibility to achieve sustainable energy and climate objectives. Urban building energy modeling (UBEM) has increased in popularity in recent years as a tool for calculating urban-scale energy use in buildings with limited resources, and that facilitated the formulation of new energy policies. However, published studies of UBEM methodologies and tools lack comprehensive examinations of the potential limitations of research and the prospects of future opportunities. This paper provides a complete conceptual framework for UBEM based on extensive literature reviews and prior researchers’ work. In addition to providing a comprehensive understanding of the various UBEM approaches and tools, future research directions are explored. The results demonstrate that earlier researches did not adequately account for input uncertainty and lacked proper simulation and calibration control for algorithms/models. These challenges not only increased the workload and computational burden of modelers but also diminished the precision of model calculations. In response, this paper provides targeted recommendations for each essential phase of the present UBEM workflow, namely model input, model development, and model calibration, to address these limitations, as well as a comprehensive analysis of future prospects. The main aim of the research is to further UBEM development as a faster, more accurate and multiscale supportive tool and establish a framework for future UBEM methods.
期刊介绍:
The journal Energy Efficiency covers wide-ranging aspects of energy efficiency in the residential, tertiary, industrial and transport sectors. Coverage includes a number of different topics and disciplines including energy efficiency policies at local, regional, national and international levels; long term impact of energy efficiency; technologies to improve energy efficiency; consumer behavior and the dynamics of consumption; socio-economic impacts of energy efficiency measures; energy efficiency as a virtual utility; transportation issues; building issues; energy management systems and energy services; energy planning and risk assessment; energy efficiency in developing countries and economies in transition; non-energy benefits of energy efficiency and opportunities for policy integration; energy education and training, and emerging technologies. See Aims and Scope for more details.