{"title":"改进的单载波IEEE 802.11ad接收机信道估计和均衡","authors":"G. Baruffa, L. Rugini","doi":"10.13164/re.2023.0438","DOIUrl":null,"url":null,"abstract":". IEEE 802.11ad uses mmWave technology for multi-gigabit wireless access networks. Multipath with large delay spread severely reduces performance due to insufficient guard interval. In this paper, we improve single-carrier IEEE 802.11ad receivers by proposing channel estimation and equalization methods for a frequency domain equalizer. Channel estimation is improved by leveraging on sparsity of the channel impulse response, while equalization is combined with an interference cancellation algorithm. The log-likelihood ratio demapper is also improved by correct power estimation of signal, interference, and noise. Simulation re-sults show that the proposed methods are effective on channels whose length exceeds the guard interval.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Channel Estimation and Equalization for Single-Carrier IEEE 802.11ad Receivers\",\"authors\":\"G. Baruffa, L. Rugini\",\"doi\":\"10.13164/re.2023.0438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". IEEE 802.11ad uses mmWave technology for multi-gigabit wireless access networks. Multipath with large delay spread severely reduces performance due to insufficient guard interval. In this paper, we improve single-carrier IEEE 802.11ad receivers by proposing channel estimation and equalization methods for a frequency domain equalizer. Channel estimation is improved by leveraging on sparsity of the channel impulse response, while equalization is combined with an interference cancellation algorithm. The log-likelihood ratio demapper is also improved by correct power estimation of signal, interference, and noise. Simulation re-sults show that the proposed methods are effective on channels whose length exceeds the guard interval.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0438\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0438","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improved Channel Estimation and Equalization for Single-Carrier IEEE 802.11ad Receivers
. IEEE 802.11ad uses mmWave technology for multi-gigabit wireless access networks. Multipath with large delay spread severely reduces performance due to insufficient guard interval. In this paper, we improve single-carrier IEEE 802.11ad receivers by proposing channel estimation and equalization methods for a frequency domain equalizer. Channel estimation is improved by leveraging on sparsity of the channel impulse response, while equalization is combined with an interference cancellation algorithm. The log-likelihood ratio demapper is also improved by correct power estimation of signal, interference, and noise. Simulation re-sults show that the proposed methods are effective on channels whose length exceeds the guard interval.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.