{"title":"四种哈龙替代品与哈龙1301的灭火性能比较","authors":"Yawei Wang, G. Zou, C. Liu, Y. Gao","doi":"10.1177/07349041211030188","DOIUrl":null,"url":null,"abstract":"The Halon 1301 fixed gas fire extinguishing system used in ship engine rooms has been banned from production all over the world, because halon destroys the ozone layer. Therefore, it is necessary to find an environmentally friendly, compatible and efficient alternative firefighting system. In this study, we performed fire extinguishing tests in an ISO9705 standard room for four alternative fire extinguishing agents, as well as Halon 1301. The fire extinguishing efficiency of each agent was determined based on its cooling effect, dilution effect of oxygen concentration, the extinguishing time of the oil pool fire and the re-ignition probability of the wood stack. The test results provide data support for the selection of alternatives of Halon 1301 from the aspect of fire extinguishing efficiency. Among these results, Novec 1230 had the best ability to put out the oil pool fire, and HFC-227ea suppressed the wood stack fire the best. The difference between the cooling ability of each fire extinguishing agent was small, and the inert gas (IG-541) displayed the best ability to dilute oxygen. Hot aerosol required the longest time to extinguish fire. Consequently, under the existing design standards, HFC-227ea had the better firefighting efficiency, more suitable to replace Halon 1301.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/07349041211030188","citationCount":"5","resultStr":"{\"title\":\"Comparison of fire extinguishing performance of four halon substitutes and Halon 1301\",\"authors\":\"Yawei Wang, G. Zou, C. Liu, Y. Gao\",\"doi\":\"10.1177/07349041211030188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Halon 1301 fixed gas fire extinguishing system used in ship engine rooms has been banned from production all over the world, because halon destroys the ozone layer. Therefore, it is necessary to find an environmentally friendly, compatible and efficient alternative firefighting system. In this study, we performed fire extinguishing tests in an ISO9705 standard room for four alternative fire extinguishing agents, as well as Halon 1301. The fire extinguishing efficiency of each agent was determined based on its cooling effect, dilution effect of oxygen concentration, the extinguishing time of the oil pool fire and the re-ignition probability of the wood stack. The test results provide data support for the selection of alternatives of Halon 1301 from the aspect of fire extinguishing efficiency. Among these results, Novec 1230 had the best ability to put out the oil pool fire, and HFC-227ea suppressed the wood stack fire the best. The difference between the cooling ability of each fire extinguishing agent was small, and the inert gas (IG-541) displayed the best ability to dilute oxygen. Hot aerosol required the longest time to extinguish fire. Consequently, under the existing design standards, HFC-227ea had the better firefighting efficiency, more suitable to replace Halon 1301.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/07349041211030188\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041211030188\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041211030188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparison of fire extinguishing performance of four halon substitutes and Halon 1301
The Halon 1301 fixed gas fire extinguishing system used in ship engine rooms has been banned from production all over the world, because halon destroys the ozone layer. Therefore, it is necessary to find an environmentally friendly, compatible and efficient alternative firefighting system. In this study, we performed fire extinguishing tests in an ISO9705 standard room for four alternative fire extinguishing agents, as well as Halon 1301. The fire extinguishing efficiency of each agent was determined based on its cooling effect, dilution effect of oxygen concentration, the extinguishing time of the oil pool fire and the re-ignition probability of the wood stack. The test results provide data support for the selection of alternatives of Halon 1301 from the aspect of fire extinguishing efficiency. Among these results, Novec 1230 had the best ability to put out the oil pool fire, and HFC-227ea suppressed the wood stack fire the best. The difference between the cooling ability of each fire extinguishing agent was small, and the inert gas (IG-541) displayed the best ability to dilute oxygen. Hot aerosol required the longest time to extinguish fire. Consequently, under the existing design standards, HFC-227ea had the better firefighting efficiency, more suitable to replace Halon 1301.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).