水下湿焊技术现状:第2部分

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
E. Pessoa, Stephen Liu
{"title":"水下湿焊技术现状:第2部分","authors":"E. Pessoa, Stephen Liu","doi":"10.29391/2021.100.014","DOIUrl":null,"url":null,"abstract":"Developments in underwater wet welding (UWW) over the past four decades are reviewed, with an emphasis on the re-search that has been conducted in the last ten years. Shielded metal arc welding with rutile-based coated electrodes was established as the most applied process in the practice of wet welding of structural steels in shallow water. The advancements achieved in previous decades had already led to control of the chemical composition and microstructure of weld metals. Research and development in consumables formulation have led to control of the amount of hydrogen content and the level of weld porosity in the weld metal. The main focus of research and development in the last decade was on weldability of naval and offshore structural steels and acceptance of welding procedures for Class A weld classification according to American Welding Society D3.6, Underwater Welding Code. Applications of strictly controlled welding techniques, including new postweld heat treatment procedures, allowed for the welding of steels with carbon equivalent values greater than 0.40. Classification societies are meticulously scrutinizing wet welding procedures and wet weld properties in structural steels at depths smaller than 30 m prior to qualifying them as Class A capable. Alternate wet welding processes that have been tested in previous decades — such as friction stir welding, dry local habitat, and gas metal arc welding — have not achieved great success as originally claimed. Almost all of the new UWW process developments in the last decade have focused on the flux cored arc welding (FCAW) process. Part 1 of this paper covered developments in microstructural optimization and weld metal porosity control for UWW. Part 2 discusses the hydrogen pickup mechanism, weld cooling rate control, design, and qualification of consumables. It ends with a description of the advancements in FCAW applications for UWW.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The State of the Art of Underwater Wet Welding Practice: Part 2\",\"authors\":\"E. Pessoa, Stephen Liu\",\"doi\":\"10.29391/2021.100.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developments in underwater wet welding (UWW) over the past four decades are reviewed, with an emphasis on the re-search that has been conducted in the last ten years. Shielded metal arc welding with rutile-based coated electrodes was established as the most applied process in the practice of wet welding of structural steels in shallow water. The advancements achieved in previous decades had already led to control of the chemical composition and microstructure of weld metals. Research and development in consumables formulation have led to control of the amount of hydrogen content and the level of weld porosity in the weld metal. The main focus of research and development in the last decade was on weldability of naval and offshore structural steels and acceptance of welding procedures for Class A weld classification according to American Welding Society D3.6, Underwater Welding Code. Applications of strictly controlled welding techniques, including new postweld heat treatment procedures, allowed for the welding of steels with carbon equivalent values greater than 0.40. Classification societies are meticulously scrutinizing wet welding procedures and wet weld properties in structural steels at depths smaller than 30 m prior to qualifying them as Class A capable. Alternate wet welding processes that have been tested in previous decades — such as friction stir welding, dry local habitat, and gas metal arc welding — have not achieved great success as originally claimed. Almost all of the new UWW process developments in the last decade have focused on the flux cored arc welding (FCAW) process. Part 1 of this paper covered developments in microstructural optimization and weld metal porosity control for UWW. Part 2 discusses the hydrogen pickup mechanism, weld cooling rate control, design, and qualification of consumables. It ends with a description of the advancements in FCAW applications for UWW.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2021.100.014\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 14

摘要

回顾了水下湿焊(UWW)在过去四十年中的发展,重点是在过去十年中进行的重新研究。金红石基涂层焊条保护金属电弧焊是结构钢浅水湿焊实践中应用最广泛的工艺。过去几十年取得的进步已经使焊接金属的化学成分和微观结构得到了控制。耗材配方的研究和开发已经实现了对焊接金属中氢含量和焊缝孔隙率水平的控制。过去十年的主要研究和开发重点是海军和海上结构钢的可焊性,以及根据美国焊接协会D3.6《水下焊接规范》进行A级焊接分类的焊接程序验收。应用严格控制的焊接技术,包括新的焊后热处理程序,允许焊接碳当量值大于0.40的钢。船级社在将深度小于30m的结构钢评定为A级之前,正在仔细审查其湿焊程序和湿焊性能。在过去几十年中测试过的替代湿法焊接工艺,如搅拌摩擦焊、干燥的局部栖息地和气体金属电弧焊,并没有像最初声称的那样取得巨大成功。在过去十年中,几乎所有新的UWW工艺发展都集中在药芯焊丝电弧焊(FCAW)工艺上。本文的第一部分介绍了UWW的微观结构优化和焊缝金属孔隙率控制方面的进展。第2部分讨论了氢气吸收机制、焊接冷却速率控制、耗材的设计和鉴定。最后介绍了FCAW在UWW应用方面的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The State of the Art of Underwater Wet Welding Practice: Part 2
Developments in underwater wet welding (UWW) over the past four decades are reviewed, with an emphasis on the re-search that has been conducted in the last ten years. Shielded metal arc welding with rutile-based coated electrodes was established as the most applied process in the practice of wet welding of structural steels in shallow water. The advancements achieved in previous decades had already led to control of the chemical composition and microstructure of weld metals. Research and development in consumables formulation have led to control of the amount of hydrogen content and the level of weld porosity in the weld metal. The main focus of research and development in the last decade was on weldability of naval and offshore structural steels and acceptance of welding procedures for Class A weld classification according to American Welding Society D3.6, Underwater Welding Code. Applications of strictly controlled welding techniques, including new postweld heat treatment procedures, allowed for the welding of steels with carbon equivalent values greater than 0.40. Classification societies are meticulously scrutinizing wet welding procedures and wet weld properties in structural steels at depths smaller than 30 m prior to qualifying them as Class A capable. Alternate wet welding processes that have been tested in previous decades — such as friction stir welding, dry local habitat, and gas metal arc welding — have not achieved great success as originally claimed. Almost all of the new UWW process developments in the last decade have focused on the flux cored arc welding (FCAW) process. Part 1 of this paper covered developments in microstructural optimization and weld metal porosity control for UWW. Part 2 discusses the hydrogen pickup mechanism, weld cooling rate control, design, and qualification of consumables. It ends with a description of the advancements in FCAW applications for UWW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信