在实践中个性化大规模评估

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Heather M. Buzick, Jodi M. Casabianca, Melissa L. Gholson
{"title":"在实践中个性化大规模评估","authors":"Heather M. Buzick,&nbsp;Jodi M. Casabianca,&nbsp;Melissa L. Gholson","doi":"10.1111/emip.12551","DOIUrl":null,"url":null,"abstract":"<p>The article describes practical suggestions for measurement researchers and psychometricians to respond to calls for social responsibility in assessment. The underlying assumption is that personalizing large-scale assessment improves the chances that assessment and the use of test scores will contribute to equity in education. This article describes a spectrum of standardization and personalization in large-scale assessment. Informed by a review of existing theories, models, and frameworks in the context of current and developing technologies and with a social justice lens, we propose steps to take, as part of assessment research and development, to contribute to the science of personalizing large-scale assessment in technically defensible ways.</p>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":"42 2","pages":"5-11"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personalizing Large-Scale Assessment in Practice\",\"authors\":\"Heather M. Buzick,&nbsp;Jodi M. Casabianca,&nbsp;Melissa L. Gholson\",\"doi\":\"10.1111/emip.12551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article describes practical suggestions for measurement researchers and psychometricians to respond to calls for social responsibility in assessment. The underlying assumption is that personalizing large-scale assessment improves the chances that assessment and the use of test scores will contribute to equity in education. This article describes a spectrum of standardization and personalization in large-scale assessment. Informed by a review of existing theories, models, and frameworks in the context of current and developing technologies and with a social justice lens, we propose steps to take, as part of assessment research and development, to contribute to the science of personalizing large-scale assessment in technically defensible ways.</p>\",\"PeriodicalId\":47345,\"journal\":{\"name\":\"Educational Measurement-Issues and Practice\",\"volume\":\"42 2\",\"pages\":\"5-11\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational Measurement-Issues and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/emip.12551\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12551","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

本文为测量研究者和心理测量学家在评估中响应社会责任的呼吁提出了切实可行的建议。潜在的假设是,个性化的大规模评估提高了评估和考试成绩的使用有助于教育公平的机会。本文描述了大规模评估中标准化和个性化的范围。通过对当前和发展中的技术背景下的现有理论、模型和框架的回顾,并从社会正义的角度出发,我们提出了一些步骤,作为评估研究和发展的一部分,以技术上可辩护的方式为个性化大规模评估的科学做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalizing Large-Scale Assessment in Practice

The article describes practical suggestions for measurement researchers and psychometricians to respond to calls for social responsibility in assessment. The underlying assumption is that personalizing large-scale assessment improves the chances that assessment and the use of test scores will contribute to equity in education. This article describes a spectrum of standardization and personalization in large-scale assessment. Informed by a review of existing theories, models, and frameworks in the context of current and developing technologies and with a social justice lens, we propose steps to take, as part of assessment research and development, to contribute to the science of personalizing large-scale assessment in technically defensible ways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信