蒙特卡罗极大似然拟合空间对数-高斯Cox过程的可行性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bethany J. Macdonald, Tilman M. Davies, Martin L. Hazelton
{"title":"蒙特卡罗极大似然拟合空间对数-高斯Cox过程的可行性","authors":"Bethany J. Macdonald,&nbsp;Tilman M. Davies,&nbsp;Martin L. Hazelton","doi":"10.1016/j.spasta.2023.100759","DOIUrl":null,"url":null,"abstract":"<div><p><span>Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation<span> of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical </span></span>proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes\",\"authors\":\"Bethany J. Macdonald,&nbsp;Tilman M. Davies,&nbsp;Martin L. Hazelton\",\"doi\":\"10.1016/j.spasta.2023.100759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation<span> of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical </span></span>proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对数-高斯Cox过程(LGCPs)是一种流行且灵活的点模式数据建模工具。虽然这种模型参数的最大似然估计在原则上是有吸引力的,但似然函数不能以封闭形式提供。已经提出了各种蒙特卡罗近似,但这些在文献中使用非常有限,并且经常被视为不切实际而不予考虑。本文全面研究了lgcp的蒙特卡罗极大似然估计(MCMLE)的计算性质。我们比较了MCMLE的各种重要性采样算法,并在数值研究中考虑了它们与其他推理方法(如最小对比度)的性能。我们发现,在现代计算能力的条件下,最佳的MCMLE算法是一个实用的参数估计命题,但该方法的性能对定义重要抽样分布的参考参数的选择相当敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes

Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信