Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun
{"title":"一种新型柔性凹入式蜂窝的弯曲性能研究","authors":"Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun","doi":"10.1115/1.4062620","DOIUrl":null,"url":null,"abstract":"\n In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Bending Behaviors of a Novel Flexible Re-entrant Honeycomb\",\"authors\":\"Yang Zhou, Yi Pan, Lin Chen, Qiang Gao, Beibei Sun\",\"doi\":\"10.1115/1.4062620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062620\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4062620","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on the Bending Behaviors of a Novel Flexible Re-entrant Honeycomb
In order to further improve the bending performance of the traditional re-entrant (RE) honeycomb, a novel auxetic honeycomb architecture, called RE-L honeycomb, was proposed by adding an additional link-wall structure to the RE cell. The bending behaviors of the novel RE-L honeycomb, including the properties under linear elastic deformation and the bending behaviors under large deformation, were comprehensively investigated by the analytical, numerical and experimental models. Results show that the proposed RE-L honeycomb significantly improves the bending compliance in the x-direction due to the highly flexible performance of the additional structure, where the bending rigidity and the maximum bending force are only 23% and 29.4% of those of the RE honeycomb, respectively. Besides, the additional structure obviously improves the designability and orthotropic property of the original auxetic honeycomb. In conclusion, the proposed RE-L shows improved bending performance, which deserves more attention in future research and related applications.