{"title":"多组二元数据的解释性项目反应模型","authors":"James P. Murphy","doi":"10.1177/0081175020967392","DOIUrl":null,"url":null,"abstract":"Like other quantitative social scientists, network researchers benefit from pooling information from multiple observed variables to infer underlying (latent) attributes or social processes. Appropriate network data for this task is increasingly available. The inherent dependencies in relational data, however, pose unique challenges. This is especially true for the ascendant tasks of cross-network comparisons and multilevel network analysis. The author draws on item response theory and multilevel (mixed effects) modeling to propose a methodological approach that accounts for these dependencies and allows the analyst to model variation of latent dyadic traits across relations, actors, and groups precisely and parsimoniously. Examples demonstrate the approach’s utility for three important research areas: tie strength in adolescent friendships, group differences in how discussing personal problems relates to tie strength, and the analysis of multiple relations.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"51 1","pages":"112 - 145"},"PeriodicalIF":2.4000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0081175020967392","citationCount":"1","resultStr":"{\"title\":\"Explanatory Item Response Models for Dyadic Data from Multiple Groups\",\"authors\":\"James P. Murphy\",\"doi\":\"10.1177/0081175020967392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Like other quantitative social scientists, network researchers benefit from pooling information from multiple observed variables to infer underlying (latent) attributes or social processes. Appropriate network data for this task is increasingly available. The inherent dependencies in relational data, however, pose unique challenges. This is especially true for the ascendant tasks of cross-network comparisons and multilevel network analysis. The author draws on item response theory and multilevel (mixed effects) modeling to propose a methodological approach that accounts for these dependencies and allows the analyst to model variation of latent dyadic traits across relations, actors, and groups precisely and parsimoniously. Examples demonstrate the approach’s utility for three important research areas: tie strength in adolescent friendships, group differences in how discussing personal problems relates to tie strength, and the analysis of multiple relations.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"51 1\",\"pages\":\"112 - 145\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0081175020967392\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0081175020967392\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0081175020967392","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
Explanatory Item Response Models for Dyadic Data from Multiple Groups
Like other quantitative social scientists, network researchers benefit from pooling information from multiple observed variables to infer underlying (latent) attributes or social processes. Appropriate network data for this task is increasingly available. The inherent dependencies in relational data, however, pose unique challenges. This is especially true for the ascendant tasks of cross-network comparisons and multilevel network analysis. The author draws on item response theory and multilevel (mixed effects) modeling to propose a methodological approach that accounts for these dependencies and allows the analyst to model variation of latent dyadic traits across relations, actors, and groups precisely and parsimoniously. Examples demonstrate the approach’s utility for three important research areas: tie strength in adolescent friendships, group differences in how discussing personal problems relates to tie strength, and the analysis of multiple relations.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.