H. Arthur Woods, Geoffrey Legault, Joel G. Kingsolver, Sylvain Pincebourde, Alisha A. Shah, Beau G. Larkin
{"title":"气候驱动的热机遇和风险的叶矿工在白杨树冠","authors":"H. Arthur Woods, Geoffrey Legault, Joel G. Kingsolver, Sylvain Pincebourde, Alisha A. Shah, Beau G. Larkin","doi":"10.1002/ecm.1544","DOIUrl":null,"url":null,"abstract":"<p>In tree canopies, incoming solar radiation interacts with leaves and branches to generate temperature differences within and among leaves, presenting thermal opportunities and risks for leaf-dwelling ectotherms. Although leaf biophysics and insect thermal ecology are well understood, few studies have examined them together in single systems. We examined temperature variability in aspen canopies, <i>Populus tremuloides</i>, and its consequences for a common herbivore, the leaf-mining caterpillar <i>Phyllocnistis populiella</i>. We shaded leaves in the field and measured effects on leaf temperature and larval growth and survival. We also estimated larval thermal performance curves for feeding and growth and measured upper lethal temperatures. Sunlit leaves directly facing the incoming rays reached the highest temperatures, typically 3–8°C above ambient air temperature. Irradiance-driven increases in temperature, however, were transient enough that they did not alter observed growth rates of leaf miners. Incubator and ramping experiments suggested that larval performance peaks between 25 and 32°C and declines to zero between 35 and 40°C, depending on the duration of temperature exposure. Upper lethal temperatures during 1-h heat shocks were 42–43°C. When larvae were active in early spring, temperatures generally were low enough to depress rates of feeding and growth below their maxima, and only rarely did estimated mine temperatures rise beyond optimal temperatures. Observed leaf or mine temperatures never approached larval upper lethal temperatures. At this site during our experiments, larvae thus appeared to have a significant thermal safety margin; the more pressing problem was inadequate heat. Detailed information on mine temperatures and larval performance curves, however, allowed us to leverage long-term data sets on air temperature to estimate potential future shifts in performance and longer-term risks to larvae from lethally high temperatures. This analysis suggests that, in the past 20 years, larval performance has often been limited by cold and that the risk of heat stress has been low. Future warming will raise mean rates of feeding and growth but also the risk of exposure to injuriously or lethally high temperatures.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Climate-driven thermal opportunities and risks for leaf miners in aspen canopies\",\"authors\":\"H. Arthur Woods, Geoffrey Legault, Joel G. Kingsolver, Sylvain Pincebourde, Alisha A. Shah, Beau G. Larkin\",\"doi\":\"10.1002/ecm.1544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In tree canopies, incoming solar radiation interacts with leaves and branches to generate temperature differences within and among leaves, presenting thermal opportunities and risks for leaf-dwelling ectotherms. Although leaf biophysics and insect thermal ecology are well understood, few studies have examined them together in single systems. We examined temperature variability in aspen canopies, <i>Populus tremuloides</i>, and its consequences for a common herbivore, the leaf-mining caterpillar <i>Phyllocnistis populiella</i>. We shaded leaves in the field and measured effects on leaf temperature and larval growth and survival. We also estimated larval thermal performance curves for feeding and growth and measured upper lethal temperatures. Sunlit leaves directly facing the incoming rays reached the highest temperatures, typically 3–8°C above ambient air temperature. Irradiance-driven increases in temperature, however, were transient enough that they did not alter observed growth rates of leaf miners. Incubator and ramping experiments suggested that larval performance peaks between 25 and 32°C and declines to zero between 35 and 40°C, depending on the duration of temperature exposure. Upper lethal temperatures during 1-h heat shocks were 42–43°C. When larvae were active in early spring, temperatures generally were low enough to depress rates of feeding and growth below their maxima, and only rarely did estimated mine temperatures rise beyond optimal temperatures. Observed leaf or mine temperatures never approached larval upper lethal temperatures. At this site during our experiments, larvae thus appeared to have a significant thermal safety margin; the more pressing problem was inadequate heat. Detailed information on mine temperatures and larval performance curves, however, allowed us to leverage long-term data sets on air temperature to estimate potential future shifts in performance and longer-term risks to larvae from lethally high temperatures. This analysis suggests that, in the past 20 years, larval performance has often been limited by cold and that the risk of heat stress has been low. Future warming will raise mean rates of feeding and growth but also the risk of exposure to injuriously or lethally high temperatures.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"92 4\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1544\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1544","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Climate-driven thermal opportunities and risks for leaf miners in aspen canopies
In tree canopies, incoming solar radiation interacts with leaves and branches to generate temperature differences within and among leaves, presenting thermal opportunities and risks for leaf-dwelling ectotherms. Although leaf biophysics and insect thermal ecology are well understood, few studies have examined them together in single systems. We examined temperature variability in aspen canopies, Populus tremuloides, and its consequences for a common herbivore, the leaf-mining caterpillar Phyllocnistis populiella. We shaded leaves in the field and measured effects on leaf temperature and larval growth and survival. We also estimated larval thermal performance curves for feeding and growth and measured upper lethal temperatures. Sunlit leaves directly facing the incoming rays reached the highest temperatures, typically 3–8°C above ambient air temperature. Irradiance-driven increases in temperature, however, were transient enough that they did not alter observed growth rates of leaf miners. Incubator and ramping experiments suggested that larval performance peaks between 25 and 32°C and declines to zero between 35 and 40°C, depending on the duration of temperature exposure. Upper lethal temperatures during 1-h heat shocks were 42–43°C. When larvae were active in early spring, temperatures generally were low enough to depress rates of feeding and growth below their maxima, and only rarely did estimated mine temperatures rise beyond optimal temperatures. Observed leaf or mine temperatures never approached larval upper lethal temperatures. At this site during our experiments, larvae thus appeared to have a significant thermal safety margin; the more pressing problem was inadequate heat. Detailed information on mine temperatures and larval performance curves, however, allowed us to leverage long-term data sets on air temperature to estimate potential future shifts in performance and longer-term risks to larvae from lethally high temperatures. This analysis suggests that, in the past 20 years, larval performance has often been limited by cold and that the risk of heat stress has been low. Future warming will raise mean rates of feeding and growth but also the risk of exposure to injuriously or lethally high temperatures.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.