$\ mathm {GL}(2)$的奇异单形结构和抽象自同构表示

IF 2.8 1区 数学 Q1 MATHEMATICS
Gal Dor
{"title":"$\\ mathm {GL}(2)$的奇异单形结构和抽象自同构表示","authors":"Gal Dor","doi":"10.1017/fmp.2023.18","DOIUrl":null,"url":null,"abstract":"Abstract We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for \n${\\mathrm {GL}}(2)$\n . We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of \n${\\mathrm {GL}}(2)$\n -modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for \n${\\mathrm {GL}}(2)$\n , and demonstrate its basic properties. This paper is a part of the author’s thesis [4].","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exotic Monoidal Structures and Abstractly Automorphic Representations for \\n$\\\\mathrm {GL}(2)$\",\"authors\":\"Gal Dor\",\"doi\":\"10.1017/fmp.2023.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for \\n${\\\\mathrm {GL}}(2)$\\n . We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of \\n${\\\\mathrm {GL}}(2)$\\n -modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for \\n${\\\\mathrm {GL}}(2)$\\n , and demonstrate its basic properties. This paper is a part of the author’s thesis [4].\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.18\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.18","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们使用θ对应关系来研究${\mathrm{GL}}(2)$的Godement–Jacquet和Jacquet–Langlands L-函数之间的等价性。我们证明了所得到的比较实际上是${\mathrm{GL}}(2)$-模范畴上奇异对称单体结构的一个表达式。此外,这使我们能够构造抽象自同构表示的阿贝尔范畴,其不可约对象是通常的自同构表示。我们推测这一范畴是研究${\mathrm{GL}}(2)$的自同构现象的自然环境,并证明了它的基本性质。本文是作者论文[4]的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exotic Monoidal Structures and Abstractly Automorphic Representations for $\mathrm {GL}(2)$
Abstract We use the theta correspondence to study the equivalence between Godement–Jacquet and Jacquet–Langlands L-functions for ${\mathrm {GL}}(2)$ . We show that the resulting comparison is in fact an expression of an exotic symmetric monoidal structure on the category of ${\mathrm {GL}}(2)$ -modules. Moreover, this enables us to construct an abelian category of abstractly automorphic representations, whose irreducible objects are the usual automorphic representations. We speculate that this category is a natural setting for the study of automorphic phenomena for ${\mathrm {GL}}(2)$ , and demonstrate its basic properties. This paper is a part of the author’s thesis [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信