{"title":"新冠肺炎部分传染病模型的稳定性分析与数值模拟","authors":"Ahmad Alalyani, S. Saber","doi":"10.1515/ijnsns-2021-0042","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this article is to formulate a simplified nonlinear fractional mathematical model to illustrate the dynamics of the new coronavirus (COVID-19). Based on the infectious characteristics of COVID-19, the population is divided into five compartments: susceptible S(t), asymptomatic infection I(t), unreported symptomatic infection U(t), reported symptomatic infections W(T) and recovered R(t), collectively referred to as (SIUWR). The existence, uniqueness, boundedness, and non-negativeness of the proposed model solution are established. In addition, the basic reproduction number R 0 is calculated. All possible equilibrium points of the model are examined and their local and global stability under specific conditions is discussed. The disease-free equilibrium point is locally asymptotically stable for R 0 leq1 and unstable for R 0 > 1. In addition, the endemic equilibrium point is locally asymptotically stable with respect to R 0 > 1. Perform numerical simulations using the Adams–Bashforth–Moulton-type fractional predictor–corrector PECE method to validate the analysis results and understand the effect of parameter variation on the spread of COVID-19. For numerical simulations, the behavior of the approximate solution is displayed in the form of graphs of various fractional orders. Finally, a brief conclusion about simulation on how to model transmission dynamics in social work.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stability analysis and numerical simulations of the fractional COVID-19 pandemic model\",\"authors\":\"Ahmad Alalyani, S. Saber\",\"doi\":\"10.1515/ijnsns-2021-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this article is to formulate a simplified nonlinear fractional mathematical model to illustrate the dynamics of the new coronavirus (COVID-19). Based on the infectious characteristics of COVID-19, the population is divided into five compartments: susceptible S(t), asymptomatic infection I(t), unreported symptomatic infection U(t), reported symptomatic infections W(T) and recovered R(t), collectively referred to as (SIUWR). The existence, uniqueness, boundedness, and non-negativeness of the proposed model solution are established. In addition, the basic reproduction number R 0 is calculated. All possible equilibrium points of the model are examined and their local and global stability under specific conditions is discussed. The disease-free equilibrium point is locally asymptotically stable for R 0 leq1 and unstable for R 0 > 1. In addition, the endemic equilibrium point is locally asymptotically stable with respect to R 0 > 1. Perform numerical simulations using the Adams–Bashforth–Moulton-type fractional predictor–corrector PECE method to validate the analysis results and understand the effect of parameter variation on the spread of COVID-19. For numerical simulations, the behavior of the approximate solution is displayed in the form of graphs of various fractional orders. Finally, a brief conclusion about simulation on how to model transmission dynamics in social work.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability analysis and numerical simulations of the fractional COVID-19 pandemic model
Abstract The purpose of this article is to formulate a simplified nonlinear fractional mathematical model to illustrate the dynamics of the new coronavirus (COVID-19). Based on the infectious characteristics of COVID-19, the population is divided into five compartments: susceptible S(t), asymptomatic infection I(t), unreported symptomatic infection U(t), reported symptomatic infections W(T) and recovered R(t), collectively referred to as (SIUWR). The existence, uniqueness, boundedness, and non-negativeness of the proposed model solution are established. In addition, the basic reproduction number R 0 is calculated. All possible equilibrium points of the model are examined and their local and global stability under specific conditions is discussed. The disease-free equilibrium point is locally asymptotically stable for R 0 leq1 and unstable for R 0 > 1. In addition, the endemic equilibrium point is locally asymptotically stable with respect to R 0 > 1. Perform numerical simulations using the Adams–Bashforth–Moulton-type fractional predictor–corrector PECE method to validate the analysis results and understand the effect of parameter variation on the spread of COVID-19. For numerical simulations, the behavior of the approximate solution is displayed in the form of graphs of various fractional orders. Finally, a brief conclusion about simulation on how to model transmission dynamics in social work.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.