{"title":"新冠肺炎部分传染病模型的稳定性分析与数值模拟","authors":"Ahmad Alalyani, S. Saber","doi":"10.1515/ijnsns-2021-0042","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this article is to formulate a simplified nonlinear fractional mathematical model to illustrate the dynamics of the new coronavirus (COVID-19). Based on the infectious characteristics of COVID-19, the population is divided into five compartments: susceptible S(t), asymptomatic infection I(t), unreported symptomatic infection U(t), reported symptomatic infections W(T) and recovered R(t), collectively referred to as (SIUWR). The existence, uniqueness, boundedness, and non-negativeness of the proposed model solution are established. In addition, the basic reproduction number R 0 is calculated. All possible equilibrium points of the model are examined and their local and global stability under specific conditions is discussed. The disease-free equilibrium point is locally asymptotically stable for R 0 leq1 and unstable for R 0 > 1. In addition, the endemic equilibrium point is locally asymptotically stable with respect to R 0 > 1. Perform numerical simulations using the Adams–Bashforth–Moulton-type fractional predictor–corrector PECE method to validate the analysis results and understand the effect of parameter variation on the spread of COVID-19. For numerical simulations, the behavior of the approximate solution is displayed in the form of graphs of various fractional orders. Finally, a brief conclusion about simulation on how to model transmission dynamics in social work.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"989 - 1002"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stability analysis and numerical simulations of the fractional COVID-19 pandemic model\",\"authors\":\"Ahmad Alalyani, S. Saber\",\"doi\":\"10.1515/ijnsns-2021-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this article is to formulate a simplified nonlinear fractional mathematical model to illustrate the dynamics of the new coronavirus (COVID-19). Based on the infectious characteristics of COVID-19, the population is divided into five compartments: susceptible S(t), asymptomatic infection I(t), unreported symptomatic infection U(t), reported symptomatic infections W(T) and recovered R(t), collectively referred to as (SIUWR). The existence, uniqueness, boundedness, and non-negativeness of the proposed model solution are established. In addition, the basic reproduction number R 0 is calculated. All possible equilibrium points of the model are examined and their local and global stability under specific conditions is discussed. The disease-free equilibrium point is locally asymptotically stable for R 0 leq1 and unstable for R 0 > 1. In addition, the endemic equilibrium point is locally asymptotically stable with respect to R 0 > 1. Perform numerical simulations using the Adams–Bashforth–Moulton-type fractional predictor–corrector PECE method to validate the analysis results and understand the effect of parameter variation on the spread of COVID-19. For numerical simulations, the behavior of the approximate solution is displayed in the form of graphs of various fractional orders. Finally, a brief conclusion about simulation on how to model transmission dynamics in social work.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"989 - 1002\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability analysis and numerical simulations of the fractional COVID-19 pandemic model
Abstract The purpose of this article is to formulate a simplified nonlinear fractional mathematical model to illustrate the dynamics of the new coronavirus (COVID-19). Based on the infectious characteristics of COVID-19, the population is divided into five compartments: susceptible S(t), asymptomatic infection I(t), unreported symptomatic infection U(t), reported symptomatic infections W(T) and recovered R(t), collectively referred to as (SIUWR). The existence, uniqueness, boundedness, and non-negativeness of the proposed model solution are established. In addition, the basic reproduction number R 0 is calculated. All possible equilibrium points of the model are examined and their local and global stability under specific conditions is discussed. The disease-free equilibrium point is locally asymptotically stable for R 0 leq1 and unstable for R 0 > 1. In addition, the endemic equilibrium point is locally asymptotically stable with respect to R 0 > 1. Perform numerical simulations using the Adams–Bashforth–Moulton-type fractional predictor–corrector PECE method to validate the analysis results and understand the effect of parameter variation on the spread of COVID-19. For numerical simulations, the behavior of the approximate solution is displayed in the form of graphs of various fractional orders. Finally, a brief conclusion about simulation on how to model transmission dynamics in social work.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.