用应用将Ck函数从开集扩展到l

IF 0.4 4区 数学 Q4 MATHEMATICS
W. Burgess, R. Raphael
{"title":"用应用将Ck函数从开集扩展到l","authors":"W. Burgess, R. Raphael","doi":"10.21136/CMJ.2023.0445-21","DOIUrl":null,"url":null,"abstract":"For k ∈ ℕ ∪ {∞} and U open in ℝ, let Ck (U) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f ∈ Ck(U) there is g ∈ C∞(ℝ) with U ⊆ coz g and h ∈ Ck(ℝ) with fg∣U = h∣U. The function f and its k derivatives are not assumed to be bounded on U. The function g is constructed using splines based on the Mollifier function. Some consequences about the ring Ck(ℝ) are deduced from this, in particular that Qcl(Ck(ℝ)) = Q(Ck(ℝ)).","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"487 - 498"},"PeriodicalIF":0.4000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On extending Ck functions from an open set to ℝ with applications\",\"authors\":\"W. Burgess, R. Raphael\",\"doi\":\"10.21136/CMJ.2023.0445-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For k ∈ ℕ ∪ {∞} and U open in ℝ, let Ck (U) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f ∈ Ck(U) there is g ∈ C∞(ℝ) with U ⊆ coz g and h ∈ Ck(ℝ) with fg∣U = h∣U. The function f and its k derivatives are not assumed to be bounded on U. The function g is constructed using splines based on the Mollifier function. Some consequences about the ring Ck(ℝ) are deduced from this, in particular that Qcl(Ck(ℝ)) = Q(Ck(ℝ)).\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"487 - 498\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0445-21\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0445-21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于k∈n∪{∞}且U开于l,设Ck (U)是U上前k阶导数连续的实值函数环。证明了对于f∈Ck(U)存在g∈C∞(h),且具有U∈coz g,且h∈Ck(h),且fg∣U = h∣U。函数f及其k阶导数不假设在u上有界,函数g是基于Mollifier函数用样条构造的。由此导出了环Ck(∈)的一些结论,特别是Qcl(Ck(∈))= Q(Ck(∈))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On extending Ck functions from an open set to ℝ with applications
For k ∈ ℕ ∪ {∞} and U open in ℝ, let Ck (U) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f ∈ Ck(U) there is g ∈ C∞(ℝ) with U ⊆ coz g and h ∈ Ck(ℝ) with fg∣U = h∣U. The function f and its k derivatives are not assumed to be bounded on U. The function g is constructed using splines based on the Mollifier function. Some consequences about the ring Ck(ℝ) are deduced from this, in particular that Qcl(Ck(ℝ)) = Q(Ck(ℝ)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信