Gael M. Martin , David T. Frazier , Worapree Maneesoonthorn , Rubén Loaiza-Maya , Florian Huber , Gary Koop , John Maheu , Didier Nibbering , Anastasios Panagiotelis
{"title":"经济学和金融学中的贝叶斯预测:现代回顾","authors":"Gael M. Martin , David T. Frazier , Worapree Maneesoonthorn , Rubén Loaiza-Maya , Florian Huber , Gary Koop , John Maheu , Didier Nibbering , Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem – model, parameters, latent states – is able to be quantified explicitly and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which enables Bayesian forecasts to be produced for virtually any problem, no matter how large or complex. The current state of play in Bayesian forecasting in economics and </span>finance is the subject of this review. The aim is to provide the reader with an overview of modern approaches to the field, set in some historical context, with sufficient computational detail given to assist the reader with implementation.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian forecasting in economics and finance: A modern review\",\"authors\":\"Gael M. Martin , David T. Frazier , Worapree Maneesoonthorn , Rubén Loaiza-Maya , Florian Huber , Gary Koop , John Maheu , Didier Nibbering , Anastasios Panagiotelis\",\"doi\":\"10.1016/j.ijforecast.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem – model, parameters, latent states – is able to be quantified explicitly and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which enables Bayesian forecasts to be produced for virtually any problem, no matter how large or complex. The current state of play in Bayesian forecasting in economics and </span>finance is the subject of this review. The aim is to provide the reader with an overview of modern approaches to the field, set in some historical context, with sufficient computational detail given to assist the reader with implementation.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023000468\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023000468","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Bayesian forecasting in economics and finance: A modern review
The Bayesian statistical paradigm provides a principled and coherent approach to probabilistic forecasting. Uncertainty about all unknowns that characterize any forecasting problem – model, parameters, latent states – is able to be quantified explicitly and factored into the forecast distribution via the process of integration or averaging. Allied with the elegance of the method, Bayesian forecasting is now underpinned by the burgeoning field of Bayesian computation, which enables Bayesian forecasts to be produced for virtually any problem, no matter how large or complex. The current state of play in Bayesian forecasting in economics and finance is the subject of this review. The aim is to provide the reader with an overview of modern approaches to the field, set in some historical context, with sufficient computational detail given to assist the reader with implementation.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.