{"title":"g型整体挤压膜阻尼器对转子系统动态特性的影响","authors":"Wei Yan, Lidong He, Gang Zhu, Xingyun Jia","doi":"10.1515/tjj-2021-0046","DOIUrl":null,"url":null,"abstract":"Abstract To solve the problems of the nonlinear damping force in the traditional squeeze film damper (SFD), a novel structure of G-type integral squeeze film damper (GISFD) based on ISFD is proposed for the first time. The finite element model and test rig of the ball bearing-rotor system are established to explore the influence of GISFD and ISFD on the dynamic characteristics of the unbalanced rotor system. The results show that both GISFD and ISFD can change the critical speed of the rotor system, reduce the bending strain energy of the shaft, and reduce the bearing dynamic load of the rotor system. Through comparison, it is found that the effect of GISFD is more obvious. The experimental results show that, compared with the unbalanced rotor system without damper, the peak-peak value of amplitude in the rotor system with GISFD and ISFD at 3000 rpm is reduced by 25.53 and 15.81%. The amplitude in the disk at the first-order critical speed is effectively reduced, and the reduction range reach 52.01 and 35.44%, respectively. GISFD has a more significant effect of suppressing unbalanced vibration, and has superior vibration damping performance when compared with ISFD.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of G-type integral squeeze film damper on the dynamic characteristics in rotor system\",\"authors\":\"Wei Yan, Lidong He, Gang Zhu, Xingyun Jia\",\"doi\":\"10.1515/tjj-2021-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To solve the problems of the nonlinear damping force in the traditional squeeze film damper (SFD), a novel structure of G-type integral squeeze film damper (GISFD) based on ISFD is proposed for the first time. The finite element model and test rig of the ball bearing-rotor system are established to explore the influence of GISFD and ISFD on the dynamic characteristics of the unbalanced rotor system. The results show that both GISFD and ISFD can change the critical speed of the rotor system, reduce the bending strain energy of the shaft, and reduce the bearing dynamic load of the rotor system. Through comparison, it is found that the effect of GISFD is more obvious. The experimental results show that, compared with the unbalanced rotor system without damper, the peak-peak value of amplitude in the rotor system with GISFD and ISFD at 3000 rpm is reduced by 25.53 and 15.81%. The amplitude in the disk at the first-order critical speed is effectively reduced, and the reduction range reach 52.01 and 35.44%, respectively. GISFD has a more significant effect of suppressing unbalanced vibration, and has superior vibration damping performance when compared with ISFD.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2021-0046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2021-0046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Effect of G-type integral squeeze film damper on the dynamic characteristics in rotor system
Abstract To solve the problems of the nonlinear damping force in the traditional squeeze film damper (SFD), a novel structure of G-type integral squeeze film damper (GISFD) based on ISFD is proposed for the first time. The finite element model and test rig of the ball bearing-rotor system are established to explore the influence of GISFD and ISFD on the dynamic characteristics of the unbalanced rotor system. The results show that both GISFD and ISFD can change the critical speed of the rotor system, reduce the bending strain energy of the shaft, and reduce the bearing dynamic load of the rotor system. Through comparison, it is found that the effect of GISFD is more obvious. The experimental results show that, compared with the unbalanced rotor system without damper, the peak-peak value of amplitude in the rotor system with GISFD and ISFD at 3000 rpm is reduced by 25.53 and 15.81%. The amplitude in the disk at the first-order critical speed is effectively reduced, and the reduction range reach 52.01 and 35.44%, respectively. GISFD has a more significant effect of suppressing unbalanced vibration, and has superior vibration damping performance when compared with ISFD.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.