{"title":"型聚磷酸铵与蒙脱土纳米复合阻燃聚乳酸","authors":"Yinglin Liu, Yina Liu, Rongjie Yang","doi":"10.1177/07349041211025456","DOIUrl":null,"url":null,"abstract":"It is reported a convenient method to obtain flame-retardant polylactic acid composite by adding low amount of crystal form II ammonium polyphosphate (APP-II) or nano-compound of crystal form II ammonium polyphosphate with calcium-based montmorillonite. The structures and thermal properties of the crystal form II ammonium polyphosphate and crystal form II ammonium polyphosphate with calcium-based montmorillonite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Crystallography and morphologies of the polylactic acid and its composites with the crystal form II ammonium polyphosphate and crystal form II ammonium polyphosphate with calcium-based montmorillonite were measured through differential scanning calorimeter and scanning electron microscopy. In flame retardancy of the polylactic acid composites, the 5 wt% crystal form II ammonium polyphosphate could make the polylactic acid achieve the UL-94 vertical burning V-0 rating and limited oxygen index 27.3%. When using crystal form II ammonium polyphosphate with calcium-based montmorillonite in flame-retarding polylactic acid, only 3 wt% nano-compound can result in the same V-0 rating level and the limited oxygen index of 28.0%. Meanwhile, polylactic acid with crystal form II ammonium polyphosphate or crystal form II ammonium polyphosphate with calcium-based montmorillonite still keeps the good mechanical properties. The developed systems are environmentally friendly and highly effective flame retarding, which show a promising future in practical large-scale polylactic acid application.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Polylactic acid flame-retarded by nano-compound of form II ammonium polyphosphate with montmorillonite\",\"authors\":\"Yinglin Liu, Yina Liu, Rongjie Yang\",\"doi\":\"10.1177/07349041211025456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is reported a convenient method to obtain flame-retardant polylactic acid composite by adding low amount of crystal form II ammonium polyphosphate (APP-II) or nano-compound of crystal form II ammonium polyphosphate with calcium-based montmorillonite. The structures and thermal properties of the crystal form II ammonium polyphosphate and crystal form II ammonium polyphosphate with calcium-based montmorillonite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Crystallography and morphologies of the polylactic acid and its composites with the crystal form II ammonium polyphosphate and crystal form II ammonium polyphosphate with calcium-based montmorillonite were measured through differential scanning calorimeter and scanning electron microscopy. In flame retardancy of the polylactic acid composites, the 5 wt% crystal form II ammonium polyphosphate could make the polylactic acid achieve the UL-94 vertical burning V-0 rating and limited oxygen index 27.3%. When using crystal form II ammonium polyphosphate with calcium-based montmorillonite in flame-retarding polylactic acid, only 3 wt% nano-compound can result in the same V-0 rating level and the limited oxygen index of 28.0%. Meanwhile, polylactic acid with crystal form II ammonium polyphosphate or crystal form II ammonium polyphosphate with calcium-based montmorillonite still keeps the good mechanical properties. The developed systems are environmentally friendly and highly effective flame retarding, which show a promising future in practical large-scale polylactic acid application.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041211025456\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041211025456","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Polylactic acid flame-retarded by nano-compound of form II ammonium polyphosphate with montmorillonite
It is reported a convenient method to obtain flame-retardant polylactic acid composite by adding low amount of crystal form II ammonium polyphosphate (APP-II) or nano-compound of crystal form II ammonium polyphosphate with calcium-based montmorillonite. The structures and thermal properties of the crystal form II ammonium polyphosphate and crystal form II ammonium polyphosphate with calcium-based montmorillonite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Crystallography and morphologies of the polylactic acid and its composites with the crystal form II ammonium polyphosphate and crystal form II ammonium polyphosphate with calcium-based montmorillonite were measured through differential scanning calorimeter and scanning electron microscopy. In flame retardancy of the polylactic acid composites, the 5 wt% crystal form II ammonium polyphosphate could make the polylactic acid achieve the UL-94 vertical burning V-0 rating and limited oxygen index 27.3%. When using crystal form II ammonium polyphosphate with calcium-based montmorillonite in flame-retarding polylactic acid, only 3 wt% nano-compound can result in the same V-0 rating level and the limited oxygen index of 28.0%. Meanwhile, polylactic acid with crystal form II ammonium polyphosphate or crystal form II ammonium polyphosphate with calcium-based montmorillonite still keeps the good mechanical properties. The developed systems are environmentally friendly and highly effective flame retarding, which show a promising future in practical large-scale polylactic acid application.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).